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Perturbative anomalous growth of light scalar
fields in the de Sitter space-time

Background - fixed - de Sitter or, more interestingly, quasi-de
Sitter space-time (slow roll inflation).

Occurs for 0 < m? << H? where H = 2, a(t) is a LFRW scale
factor. The simplest and textbook example

H=Hy =const, m=20

(Linde, 1982; AS, 1982; Vilenkin and Ford, 1982):
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where N =
of inflation. Stra|ghtforward generallzat|on to the quasi-de
Sitter case |H| < H2,



For , the Bunch-Davies equilibrium value
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is reached after a large number of e-folds N > %
Purely infrared effect - creation of real field fluctuations;
renormalization is not important and does not affect it.

For the de Sitter inflation (gravitons only) (AS, 1979):
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The assumption of small perturbations breaks down for

N > 1/GHg. Still ongoing discussion on the final outcome of
this effect. My opinion - no screening of the background
cosmological constant, instead - stochastic drift through an
infinite number of locally de Sitter, but globally non-equivalent
vacua.



An always larger effect - due to scalar (adiabatic) fluctuations
of an inflaton degree of freedom (Mukhanov and Chibisov,
1981; Hawking, 1982; AS, 1982; Guth and Pi, 1982):
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where the index k means that the quantity is taken at the
moment t = t, of the Hubble radius crossing during inflation
for each spatial Fourier mode

The consistency relation
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= 8|ng| < 0.24

(the last inequality - from the most recent observations).



Beyond small perturbations during slow-roll
inflation

Locally — around our world-line — slow-roll inflation has both
the beginning and the end.

Globally it has no beginning and no end in the most of
interesting cases — in the sense that inflating patches always
exist somewhere in space and time (but outside our past and
future light cones) -

Taking backreaction into account — quantum background.

For sufficiently large Ny = In (?’) < h? > becomes larger
than 1. Loop corrections proportional to higher powers of h
may become important in this regime only.



Stochastic approach to inflation ("stochastic inflation”):
DU 1 N> (A
R, — E(BHR =81GT,/(8ap)

- not as a function of < g,5 > !

Stochastic inflation:

1) can deal with an arbitrary large (though sufficiently
smooth) global inhomogeneity;

2) takes backreaction of created fluctuations into account;

3) goes beyond any finite order of loop corrections.

Fully developed in Starobinsky (1984,1986) though the first
simplified application (but beyond the one-loop approximation)
was already in Starobinsky (1982).



Langevin equation for the large-scale field

The first main idea: splitting of the inflaton field ¢ into a
large-scale and a small-scale parts with respect to H. More
exactly, the border is assumed to lie at kK = eaH with
exp (—%) L e 1.
The second main idea: a non-commutative part of the
large-scale field is very small (it is composed from decaying
modes), so we may neglect it. Then the remaining part is
equivalent (not equal!) to a stochastic c-number (classical)
field with some distribution function.

do 1 dV

dr(n —  3Hm1dg
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n n H - n n
< (") (") >= 5 (" "),
Applicability conditions — the standard slow-roll ones:

V"? < 487GV?, |V'| < 81GV/3.



The Gaussian white noise f describes the flow of small-scale
linear field modes through the border k = eaH to the
large-scale region in the course of the universe expansion.
The time-like variables: 7(") = [ H"(t,r) dt, where

This is not a time reparametrization t — f(t) in GR. Different
7(") describe different stochastic processes and even have
different dimensionality. Different "clocks” are needed to
measure them:

1) n = 0: phase of a wave function of a massive particle

(m > H),

2) n = 1: scalar metric perturbations (0/V formalism);

3) n = 3: dispersion of a light scalar field generated during
inflation

1 ' <708 >
<yi>=—"— < [ H¥dt>= —_— |
X 472 / 472
See F. Finelli et al., Phys. Rev. D 79, 044007 (2009) for
more details.



Einstein-Smoluhovsky (Fokker-Planck) equation

dp 0 4 1 9%, 5,
o = a5 (3w ) * i (H70)

Probability conservation: [ pdo — 1.

Remarks.

» More generally, the last term can be written the form

1 0 0
- H(3fn)a_ H(3fn)(17a)
872 ¢ ( 56 ( 2

with 0 < o < 1.

a = 0 - Ito calculus.

« = 1/2 — Stratonovich calculus.

However, keeping terms explicitly depending on o exceeds
the accuracy of the stochastic approach. Thus, o may
put 0.



» All results are independent of the form of a cutoff in the
momentum space as far as it occurs for k < aH (¢ < 1).

» Backreaction is taken into account: 6T/ = (V — Vi) 0},

» No necessity in any infrared cutoff. Problems with the so
called "volume weighting” arise because quantities like
a®p are considered which are not normalizable, thus, they
may not be considered as probabilities of anything from
the mathematical point of view ("unitarity breaking”).
Their physical justification is also flawed since it based on
the wrong assumption that all Hubble physical volumes
(" observers”) at given T are clones of each other while it
is not so.



» Another possible source of apparent infrared divergences:
use of "gauge invariant” (with respect to a background
space-time metric) variables like ((r. t) which are not
generally covariant with respect to the full metric and,
therefore, not directly observable. In contrast, quantities
like C(r,t) — C(0, tp) are generally covariant and
observable though non-local.

» The accuracy of the stochastic approach is not sufficient
for calculating quantities ~ H? in < ¢ > and ~ H* in
EMT average values because of the omission of a
contribution from the small-scale part (including the
conformal anomaly). However, all larger quantities (if
exist) can be calculated quantitatively correctly.



Transition to predictions for the post-inflationary
evolution

From p(¢, 7) during inflation to the distribution w(7) over the
total local duration of inflation:

(¢,7)-
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For the graceful exit to a post-inflationary epoch, the
stochastic force should be much less than the classical one
during last e-folds of inflation.



From ON- to N-formalism

The same way to obtain the joint distribution w(0, 7; |r|, 72)
from the 2-point joint probability distribution
p(01,0,71; ¢, |r], 72) during inflation.

Let n =1. When
ds? = dt? — a%(t)e**(Vdr? + small terms

after inflation and complete thermalization where



QFT of a self-interacting scalar field in the de
Sitter background

A.A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357
(1994).

The equilibrium (static) solution for the 1-point distribution:

A2V
Peq(®) = const e, v= ZT(‘)S(/))

Arbitrary Green functions and n-point distributions can be
constructed, too, using solutions of the same Fokker-Planck
equation.



1 1 87 GV,
V(¢)=Vo+§m2(b2+1)\¢47 D<A <1, H2 =270

Three regimes:

1. Perturbative regime VAH? < m? < H3.

3HE 429 3NHY
< ¢ >= (3/5 —52 ) =1

8mm?2 8m2m*

Compare to the same result in the one-loop (Gaussian)
approximation:

2 3Hg | n2
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2. Massless self-interacting regime |m?| < v/ AHZ.
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The scale m? ~ AH proposed recently in arXiv:1005.3551 is
not critical at all!

3. Symmetry breaking regime m’> < 0, AH; < |m?| < H;.

m?| | 3Hg

2
< >=
¢ A 1672|m?|

+ O (e 1)

The (modulus of) exponent is the action for the
Hawking-Moss instanton.
See also F. Finelli et al., Phys. Rev. D 82, 064020 (2010).



Probabilities to go to different vacua after inflation

Let inflation may end in two vacua: ¢ — ¢; and & — ¢, with
V(¢1) = V(¢2) = 0 (to consider a larger number of
post-inflationary vacua, ¢ should have more than
one-dimensional internal space).




Boundary conditions at the end of inflation:
p(o1,7) = p(pa2, 7) = 0.

Method of calculation (Starobinsky (1984,1986)): consider the
quantities

Qn(6) = [ 706, o
0

where 7 = 0 corresponds to the local beginning of inflation.
Qm((/bl) = Qm((/b) =0.

By integrating the Fokker-Planck equation over 7, we get for
m=0:
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P; = (y — the absolute probability to go to the vacuum

¢ = o1,
P, =1 — (y — the absolute probability to go to the vacuum
¢ = ¢o.

No n dependence in C !



Local duration of inflation
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(.:1 is C; with ¢; and ¢, interchanged.



Choice of an initial condition

» Static solutions — not normalizable in the inflationary (i.e.
unstable) case.

> po(¢) = 6(¢ — ¢o) — why?

» "Eternal inflation as an initial condition”: po(®) o pg, (¢)
— the wave function of the lowest energy level of the
Schrodinger equation arising through the separation of
variables in the Fokker-Planck equation (Ey = 0 due to
hidden supersymmetry of the former).

1) Not possible in the continuum spectrum case.

2) In the discrete spectrum case, generically £, — E; ~ E;
— not enough time for relaxation.

As a whole, "eternal” inflation seems not be eternal
enough to fix the initial condition uniquely.



However, if inflation had occurred at all, the dependence of
predictions on po(¢) is comparatively weak: for almost all

po(¢) except from the HH-like one po(¢) o exp (GHZ( )> the

main contribution comes from the highest maximum of V/(¢)
without any necessity of a "tunneling” initial condition.

On the other hand, if po(¢) o exp (GH+(¢)) there is

practically no inflation at all, and final probabilities P; and P,
are equal to the initial ones.



Conclusions

» During slow-roll inflation, backreaction of created inflaton
fluctuations has to be taken into account for sufficiently
long inflation and leads to QFT in a stochastic
background.

» No problems of principle in predicting all joint probability
distributions for light scalar fields, including the inflaton
itself, during and after inflation (/V-formalism) in the
original (probability conserving) stochastic approach, once
an initial condition pg(¢) is given. No necessity to refer to
other universes outside our light cone.



» No satisfactory principle to fix po(¢) uniquely.

» Some dependence on pg(¢) remains in final answers, so a
possibility to get some knowledge on it from observational
data does not seem hopeless. However, if inflation had
occurred at all, the dependence of predictions on py(¢) is
weak and mainly produced by the region around the
highest maximum of V/(¢). For this, no specific
"tunneling” initial condition is needed.
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