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Zero point energy

QFT vacuum to vacuum transition: 〈0|H|0〉
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gives ∞ physical meaning?

Regularization + Renormalization ( cut-off, dim, ζ )

Even then: Has the final value real sense ?
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Operator Zeta F’s in M Φ: Origins
The Riemann zeta function ζ(s) is a function of a complex variable, s. To define it, one
starts with the infinite series ∞∑

n=1

1

ns

which converges for all complex values of s with real Re s > 1, and then defines ζ(s) as
the analytic continuation, to the whole complex s−plane, of the function given, Re s > 1,
by the sum of the preceding series.

Leonhard Euler already considered the above series in 1740, but for positive integer
values of s, and later Chebyshev extended the definition to Re s > 1.
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the analytic continuation, to the whole complex s−plane, of the function given, Re s > 1,
by the sum of the preceding series.

Leonhard Euler already considered the above series in 1740, but for positive integer
values of s, and later Chebyshev extended the definition to Re s > 1.

Godfrey H Hardy and John E Littlewood, “Contributions to the Theory of the Riemann
Zeta-Function and the Theory of the Distribution of Primes", Acta Math 41, 119 (1916)

Did much of the earlier work, by establishing the convergence and equivalence of series
regularized with the heat kernel and zeta function regularization methods

G H Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

Srinivasa I Ramanujan had found for himself the functional equation of the zeta function
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Did much of the earlier work, by establishing the convergence and equivalence of series
regularized with the heat kernel and zeta function regularization methods

G H Hardy, Divergent Series (Clarendon Press, Oxford, 1949)

Srinivasa I Ramanujan had found for himself the functional equation of the zeta function

Torsten Carleman, “Propriétés asymptotiques des fonctions fondamentales des
membranes vibrantes" (French), 8. Skand Mat-Kongr, 34-44 (1935)

Zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian
manifold for the case of a compact region of the plane

QFEXT 2011, CC Pedro Pascual, Benasque, Sep 18-24, 2011 – p. 4/27



Robert T Seeley, “Complex powers of an elliptic operator. 1967
Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966)
pp. 288-307, Amer. Math. Soc., Providence, R.I.
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Robert T Seeley, “Complex powers of an elliptic operator. 1967
Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966)
pp. 288-307, Amer. Math. Soc., Providence, R.I.

Extended this to elliptic pseudo-differential operators A on compact
Riemannian manifolds. So for such operators one can define the
determinant using zeta function regularization
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Robert T Seeley, “Complex powers of an elliptic operator. 1967
Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966)
pp. 288-307, Amer. Math. Soc., Providence, R.I.

Extended this to elliptic pseudo-differential operators A on compact
Riemannian manifolds. So for such operators one can define the
determinant using zeta function regularization

D B Ray, Isadore M Singer, “R-torsion and the Laplacian on
Riemannian manifolds", Advances in Math 7, 145 (1971)

Used this to define the determinant of a positive self-adjoint operator
A (the Laplacian of a Riemannian manifold in their application) with
eigenvalues a1, a2, ...., and in this case the zeta function is formally
the trace

ζA(s) = Tr (A)−s

the method defines the possibly divergent infinite product
∞∏

n=1

an = exp[−ζA′(0)]
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J. Stuart Dowker, Raymond Critchley

“Effective Lagrangian and energy-momentum tensor

in de Sitter space", Phys. Rev. D13, 3224 (1976)

Abstract

The effective Lagrangian and vacuum energy-momentum

tensor < Tµν > due to a scalar field in a de Sitter space

background are calculated using the dimensional-regularization

method. For generality the scalar field equation is chosen in the

form (�2 + ξR+m2)ϕ = 0. If ξ = 1/6 and m = 0, the

renormalized < Tµν > equals gµν(960π2a4)−1, where a is the

radius of de Sitter space. More formally, a general zeta-function

method is developed. It yields the renormalized effective

Lagrangian as the derivative of the zeta function on the curved

space. This method is shown to be virtually identical to a

method of dimensional regularization applicable to any

Riemann space.
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Stephen W Hawking, “Zeta function regularization of path integrals
in curved spacetime", Commun Math Phys 55, 133 (1977)
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Stephen W Hawking, “Zeta function regularization of path integrals
in curved spacetime", Commun Math Phys 55, 133 (1977)

This paper describes a technique for regularizing quadratic path
integrals on a curved background spacetime. One forms a
generalized zeta function from the eigenvalues of the differential
operator that appears in the action integral. The zeta function is a
meromorphic function and its gradient at the origin is defined to be the
determinant of the operator. This technique agrees with dimensional
regularization where one generalises to n dimensions by adding extra
flat dims. The generalized zeta function can be expressed as a Mellin
transform of the kernel of the heat equation which describes diffusion
over the four dimensional spacetime manifold in a fifth dimension of
parameter time. Using the asymptotic expansion for the heat kernel,
one can deduce the behaviour of the path integral under scale
transformations of the background metric. This suggests that there
may be a natural cut off in the integral over all black hole background
metrics. By functionally differentiating the path integral one obtains an
energy momentum tensor which is finite even on the horizon of a
black hole. This EM tensor has an anomalous trace.
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Pseudodifferential Operator (ΨDO)
A ΨDO of order m Mn manifold

Symbol of A: a(x, ξ) ∈ Sm(Rn × R
n) ⊂ C∞ functions such that

for any pair of multi-indices α, β there exists a constant Cα,β so

that ∣∣∣∂α
ξ ∂

β
xa(x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)m−|α|
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A ΨDO of order m Mn manifold

Symbol of A: a(x, ξ) ∈ Sm(Rn × R
n) ⊂ C∞ functions such that

for any pair of multi-indices α, β there exists a constant Cα,β so

that ∣∣∣∂α
ξ ∂

β
xa(x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)m−|α|

Definition of A (in the distribution sense)

Af(x) = (2π)−n

∫
ei<x,ξ>a(x, ξ)f̂(ξ) dξ

f is a smooth function

f ∈ S =
{
f ∈ C∞(Rn); supx|xβ∂αf(x)| <∞, ∀α, β ∈ Nn}

S ′ space of tempered distributions

f̂ is the Fourier transform of f
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ΨDOs are useful tools
The symbol of a ΨDO has the form:

a(x, ξ) = am(x, ξ) + am−1(x, ξ) + · · · + am−j(x, ξ) + · · ·
being ak(x, ξ) = bk(x) ξk

a(x, ξ) is said to be elliptic if it is invertible for large |ξ| and if there exists a
constant C such that |a(x, ξ)−1| ≤ C(1 + |ξ|)−m, for |ξ| ≥ C

− An elliptic ΨDO is one with an elliptic symbol
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a(x, ξ) = am(x, ξ) + am−1(x, ξ) + · · · + am−j(x, ξ) + · · ·
being ak(x, ξ) = bk(x) ξk

a(x, ξ) is said to be elliptic if it is invertible for large |ξ| and if there exists a
constant C such that |a(x, ξ)−1| ≤ C(1 + |ξ|)−m, for |ξ| ≥ C

− An elliptic ΨDO is one with an elliptic symbol

−− ΨDOs are basic tools both in Mathematics & in Physics −−

1. Proof of uniqueness of Cauchy problem [Calderón-Zygmund]

2. Proof of the Atiyah-Singer index formula

3. In QFT they appear in any analytical continuation process —as complex
powers of differential operators, like the Laplacian [Seeley, Gilkey, ...]

4. Basic starting point of any rigorous formulation of QFT & gravitational
interactions through µlocalization (the most important step towards the
understanding of linear PDEs since the invention of distributions)

[K Fredenhagen, R Brunetti, . . . R Wald ’06, R Haag EPJH35 ’10]
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Existence ofζA for A a ΨDO
1. A a positive-definite elliptic ΨDO of positive order m ∈ R+

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold
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2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold

(a) The zeta function is defined as:
ζA(s) = tr A−s =

∑
j λ

−s
j , Re s > n

m := s0

{λj} ordered spect of A, s0 = dimM/ordA abscissa of converg of ζA(s)
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{λj} ordered spect of A, s0 = dimM/ordA abscissa of converg of ζA(s)

(b) ζA(s) has a meromorphic continuation to the whole complex plane C

(regular at s = 0), provided the principal symbol of A, am(x, ξ), admits a
spectral cut: Lθ = {λ ∈ C; Argλ = θ, θ1 < θ < θ2}, SpecA ∩ Lθ = ∅
(the Agmon-Nirenberg condition)
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m := s0

{λj} ordered spect of A, s0 = dimM/ordA abscissa of converg of ζA(s)

(b) ζA(s) has a meromorphic continuation to the whole complex plane C

(regular at s = 0), provided the principal symbol of A, am(x, ξ), admits a
spectral cut: Lθ = {λ ∈ C; Argλ = θ, θ1 < θ < θ2}, SpecA ∩ Lθ = ∅
(the Agmon-Nirenberg condition)

(c) The definition of ζA(s) depends on the position of the cut Lθ

(d) The only possible singularities of ζA(s) are poles at
sj = (n− j)/m, j = 0, 1, 2, . . . , n− 1, n+ 1, . . .
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Definition of Determinant
H ΨDO operator {ϕi, λi} spectral decomposition
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i∈I λi =

∑
i∈I lnλi
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Definition of Determinant
H ΨDO operator {ϕi, λi} spectral decomposition

∏
i∈I λi ?! ln

∏
i∈I λi =

∑
i∈I lnλi

Riemann zeta func: ζ(s) =
∑∞

n=1 n
−s, Re s > 1 (& analytic cont)

Definition: zeta function of H ζH(s) =
∑

i∈I λ
−s
i = tr H−s

As Mellin transform: ζH(s) = 1
Γ(s)

∫ ∞
0 dt ts−1 tr e−tH , Res > s0

Derivative: ζ ′H(0) = −∑
i∈I lnλi
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detζ H = exp [−ζ ′H(0)]
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Weierstrass def: subtract leading behavior of λi in i, as i→ ∞,

until series
∑

i∈I lnλi converges =⇒ non-local counterterms !!
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Derivative: ζ ′H(0) = −∑
i∈I lnλi

Determinant: Ray & Singer, ’67
detζ H = exp [−ζ ′H(0)]

Weierstrass def: subtract leading behavior of λi in i, as i→ ∞,

until series
∑

i∈I lnλi converges =⇒ non-local counterterms !!

C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...
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Properties
The definition of the determinant detζ A only depends on the
homotopy class of the cut

A zeta function (and corresponding determinant) with the same
meromorphic structure in the complex s-plane and extending the
ordinary definition to operators of complex order m ∈ C\Z (they do not
admit spectral cuts), has been obtained [Kontsevich and Vishik]

Asymptotic expansion for the heat kernel:

tr e−tA =
∑′

λ∈Spec A e
−tλ

∼ αn(A) +
∑

n6=j≥0 αj(A)t−sj +
∑

k≥1 βk(A)tk ln t, t ↓ 0

αn(A) = ζA(0), αj(A) = Γ(sj) Ress=sj
ζA(s), sj /∈ −N

αj(A) = (−1)k

k! [PP ζA(−k) + ψ(k + 1) Ress=−k ζA(s)] ,

sj = −k, k ∈ N

βk(A) = (−1)k+1

k! Ress=−k ζA(s), k ∈ N\{0}

PP φ := lims→p

[
φ(s) − Ress=p φ(s)

s−p

]
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The Wodzicki Residue
The Wodzicki (or noncommutative) residue is the only extension of the
Dixmier trace to ΨDOs which are not in L(1,∞)

Only trace one can define in the algebra of ΨDOs (up to multipl const)

Definition: res A = 2 Ress=0 tr (A∆−s), ∆ Laplacian

Satisfies the trace condition: res (AB) = res (BA)

Important!: it can be expressed as an integral (local form)

res A =
∫

S∗M
tr a−n(x, ξ) dξ

with S∗M ⊂ T ∗M the co-sphere bundle on M (some authors put a
coefficient in front of the integral: Adler-Manin residue)

If dim M = n = − ord A (M compact Riemann, A elliptic, n ∈ N)
it coincides with the Dixmier trace, and Ress=1ζA(s) = 1

n res A−1

The Wodzicki residue makes sense for ΨDOs of arbitrary order.
Even if the symbols aj(x, ξ), j < m, are not coordinate invariant,
the integral is, and defines a trace
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Singularities of ζA
A complete determination of the meromorphic structure of some zeta
functions in the complex plane can be also obtained by means of the
Dixmier trace and the Wodzicki residue

Missing for full descript of the singularities: residua of all poles

As for the regular part of the analytic continuation: specific methods
have to be used (see later)

Proposition. Under the conditions of existence of the zeta function of
A, given above, and being the symbol a(x, ξ) of the operator A
analytic in ξ−1 at ξ−1 = 0:

Ress=sk
ζA(s) = 1

m res A−sk = 1
m

∫
S∗M

tr a−sk

−n (x, ξ) dn−1ξ

Proof. The homog component of degree −n of the corresp power of
the principal symbol of A is obtained by the appropriate derivative of
a power of the symbol with respect to ξ−1 at ξ−1 = 0 :

a−sk

−n (x, ξ) =
(

∂
∂ξ−1

)k [
ξn−ka(k−n)/m(x, ξ)

]∣∣∣∣
ξ−1=0

ξ−n
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Multipl or N-Comm Anomaly, or Defect
Given A, B, and AB ψDOs, even if ζA, ζB, and ζAB exist,
it turns out that, in general,

detζ(AB) 6= detζA detζB
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Multipl or N-Comm Anomaly, or Defect
Given A, B, and AB ψDOs, even if ζA, ζB, and ζAB exist,
it turns out that, in general,

detζ(AB) 6= detζA detζB

The multiplicative (or noncommutative) anomaly (defect)
is defined as

δ(A,B) = ln

[
detζ(AB)

detζ A detζ B

]
= −ζ ′AB(0) + ζ ′A(0) + ζ ′B(0)
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Multipl or N-Comm Anomaly, or Defect
Given A, B, and AB ψDOs, even if ζA, ζB, and ζAB exist,
it turns out that, in general,

detζ(AB) 6= detζA detζB

The multiplicative (or noncommutative) anomaly (defect)
is defined as

δ(A,B) = ln

[
detζ(AB)

detζ A detζ B

]
= −ζ ′AB(0) + ζ ′A(0) + ζ ′B(0)

Wodzicki formula

δ(A,B) =
res

{
[ln σ(A,B)]2

}

2 ordA ordB (ordA+ ordB)

where σ(A,B) = Aord BB−ord A
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Consequences of the Multipl Anomaly
In the path integral formulation

∫
[dΦ] exp

{
−

∫
dDx

[
Φ†(x)

( )
Φ(x) + · · ·

]}

Gaussian integration: −→ det
( )±


 A1 A2

A3 A4


 −→


 A

B




det(AB) or detA · detB ?

In a situation where a superselection rule exists, AB has no

sense (much less its determinant): =⇒ detA · detB

But if diagonal form obtained after change of basis (diag.

process), the preserved quantity is: =⇒ det(AB)
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Basic strategies
Jacobi’s identity for the θ−function

θ3(z, τ) := 1 + 2
∑∞

n=1 q
n2

cos(2nz), q := eiπτ , τ ∈ C

θ3(z, τ) = 1√
−iτ

ez2/iπτ θ3

(
z
τ
|−1

τ

)
equivalently:

∞∑

n=−∞
e−(n+z)2t =

√
π

t

∞∑

n=0

e−
π2n2

t cos(2πnz), z, t ∈ C, Ret > 0

Higher dimensions: Poisson summ formula (Riemann)
∑

~n∈Zp

f(~n) =
∑

~m∈Zp

f̃(~m)

f̃ Fourier transform
[Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]

Truncated sums −→ asymptotic series
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Extended CS Formulas (ECS)
Consider the zeta function (Res > p/2, A > 0,Req > 0)

ζA,~c,q(s) =
∑

~n∈Zp

′
[
1

2
(~n+ ~c)

T
A (~n+ ~c) + q

]−s

=
∑

~n∈Zp

′
[Q (~n+ ~c) + q]

−s

prime: point ~n = ~0 to be excluded from the sum
(inescapable condition when c1 = · · · = cp = q = 0)

Q (~n+ ~c) + q = Q(~n) + L(~n) + q̄
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Extended CS Formulas (ECS)
Consider the zeta function (Res > p/2, A > 0,Req > 0)

ζA,~c,q(s) =
∑

~n∈Zp

′
[
1

2
(~n+ ~c)

T
A (~n+ ~c) + q

]−s

=
∑

~n∈Zp

′
[Q (~n+ ~c) + q]

−s

prime: point ~n = ~0 to be excluded from the sum
(inescapable condition when c1 = · · · = cp = q = 0)

Q (~n+ ~c) + q = Q(~n) + L(~n) + q̄

Case q 6= 0 (Req > 0)

ζA,~c,q(s) =
(2π)p/2qp/2−s

√
detA

Γ(s− p/2)

Γ(s)
+

2s/2+p/4+2πsq−s/2+p/4

√
detA Γ(s)

×
∑

~m∈Z
p
1/2

′ cos(2π~m · ~c)
(
~mTA−1~m

)s/2−p/4
Kp/2−s

(
2π

√
2q ~mTA−1~m

)

[ECS1]

QFEXT 2011, CC Pedro Pascual, Benasque, Sep 18-24, 2011 – p. 18/27



Extended CS Formulas (ECS)
Consider the zeta function (Res > p/2, A > 0,Req > 0)

ζA,~c,q(s) =
∑

~n∈Zp

′
[
1

2
(~n+ ~c)

T
A (~n+ ~c) + q

]−s

=
∑

~n∈Zp

′
[Q (~n+ ~c) + q]

−s

prime: point ~n = ~0 to be excluded from the sum
(inescapable condition when c1 = · · · = cp = q = 0)

Q (~n+ ~c) + q = Q(~n) + L(~n) + q̄

Case q 6= 0 (Req > 0)

ζA,~c,q(s) =
(2π)p/2qp/2−s

√
detA

Γ(s− p/2)

Γ(s)
+

2s/2+p/4+2πsq−s/2+p/4

√
detA Γ(s)

×
∑

~m∈Z
p
1/2

′ cos(2π~m · ~c)
(
~mTA−1~m

)s/2−p/4
Kp/2−s

(
2π

√
2q ~mTA−1~m

)

[ECS1]
Pole: s = p/2 Residue:

Ress=p/2 ζA,~c,q(s) =
(2π)p/2

Γ(p/2)
(detA)−1/2
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation
—with the corresponding residua— explicitly
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation
—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ~c arbitrary, while q is (to start) a non-neg constant
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation
—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ~c arbitrary, while q is (to start) a non-neg constant

Kν modified Bessel function of the second kind and the subindex 1/2
in Z

p
1/2 means that only half of the vectors ~m ∈ Z

p participate in the
sum. E.g., if we take an ~m ∈ Z

p we must then exclude −~m
[simple criterion: one may select those vectors in Z

p\{~0} whose
first non-zero component is positive]
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Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation
—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ~c arbitrary, while q is (to start) a non-neg constant

Kν modified Bessel function of the second kind and the subindex 1/2
in Z

p
1/2 means that only half of the vectors ~m ∈ Z

p participate in the
sum. E.g., if we take an ~m ∈ Z

p we must then exclude −~m
[simple criterion: one may select those vectors in Z

p\{~0} whose
first non-zero component is positive]

Case c1 = · · · = cp = q = 0 [true extens of CS, diag subcase]

ζAp(s) =
21+s

Γ(s)

p−1∑

j=0

(detAj)
−1/2

[
πj/2a

j/2−s
p−j Γ

(
s− j

2

)
ζR(2s−j) +

4πsa
j
4
− s

2

p−j

∞∑

n=1

∑

~mj∈Zj

′nj/2−s
(
~mt

jA
−1
j ~mj

)s/2−j/4
Kj/2−s

(
2πn

√
ap−j ~mt

jA
−1
j ~mj

)]

[ECS3d]
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Emilio Elizalde

Ten Physical Applications
of Spectral Zeta Functions

Springer



QFT in s-t with non-commtoroidal part
D−dim non-commut manifold: M = R

1,d
⊗

T
p
θ, D = d+ p+ 1

T
p
θ a p−dim non-commutative torus: [xj , xk] = iθσjk

σjk a real, nonsingular, antisymmetric matrix of ±1 entries

θ the non-commutative parameter.
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QFT in s-t with non-commtoroidal part
D−dim non-commut manifold: M = R

1,d
⊗

T
p
θ, D = d+ p+ 1

T
p
θ a p−dim non-commutative torus: [xj , xk] = iθσjk

σjk a real, nonsingular, antisymmetric matrix of ±1 entries

θ the non-commutative parameter.

Interest recently, in connection with M−theory & string theory

[Connes,Douglas,Seiberg,Cheung,Chu,Chomerus,Ardalan, . . . ]
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QFT in s-t with non-commtoroidal part
D−dim non-commut manifold: M = R

1,d
⊗

T
p
θ, D = d+ p+ 1

T
p
θ a p−dim non-commutative torus: [xj , xk] = iθσjk

σjk a real, nonsingular, antisymmetric matrix of ±1 entries

θ the non-commutative parameter.

Interest recently, in connection with M−theory & string theory

[Connes,Douglas,Seiberg,Cheung,Chu,Chomerus,Ardalan, . . . ]

Unified treatment: only one zeta function, nature of field

(bosonic, fermionic) as a parameter, together with # of

compact, noncompact, and noncommutative dimensions

ζα(s) =
V Γ(s− (d+ 1)/2)

(4π)(d+1)/2 Γ(s)

∑

~n∈Zp

′
Q(~n)(d+1)/2−s

[
1+Λθ2−2αQ(~n)−α

](d+1)/2−s

α = 2 bos, α = 3 ferm, V = Vol (Rd+1) of non-compact part

Q(~n) =
∑p

j=1 ajn
2
j a diag quadratic form, Rj = a

−1/2
j compactific radii
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After some calculations,

ζα(s) =
V

(4π)(d+1)/2

∞∑

l=0

Γ(s+ l − d+1
2 )

l! Γ(s)
(−Λθ2−2α)l ζQ,~0,0(s+αl−

d+ 1

2
)

for all radii equal to R, with I(~n) =
∑p

j=1 n
2
j ,

ζα(s) =
V

(4π)(d+1)/2Rd+1−2s

∞∑

l=0

Γ(s+ l − d+1
2 )

l! Γ(s)
(−Λθ2−2α)l ζE(s+αl−d+ 1

2
)

where we use the notation ζE(s) := ζI,~0,0(s)

e.g., the Epstein zeta function for the standard quadratic form
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After some calculations,

ζα(s) =
V

(4π)(d+1)/2

∞∑

l=0

Γ(s+ l − d+1
2 )

l! Γ(s)
(−Λθ2−2α)l ζQ,~0,0(s+αl−

d+ 1

2
)

for all radii equal to R, with I(~n) =
∑p

j=1 n
2
j ,

ζα(s) =
V

(4π)(d+1)/2Rd+1−2s

∞∑

l=0

Γ(s+ l − d+1
2 )

l! Γ(s)
(−Λθ2−2α)l ζE(s+αl−d+ 1

2
)

where we use the notation ζE(s) := ζI,~0,0(s)

e.g., the Epstein zeta function for the standard quadratic form

Rich pole structure: pole of Epstein zf at

s = p/2 − αk + (d+ 1)/2 = D/2 − αk, combined with

poles of Γ, yields a rich pattern of singul for ζα(s)
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After some calculations,

ζα(s) =
V

(4π)(d+1)/2

∞∑

l=0

Γ(s+ l − d+1
2 )

l! Γ(s)
(−Λθ2−2α)l ζQ,~0,0(s+αl−

d+ 1

2
)

for all radii equal to R, with I(~n) =
∑p

j=1 n
2
j ,

ζα(s) =
V

(4π)(d+1)/2Rd+1−2s

∞∑

l=0

Γ(s+ l − d+1
2 )

l! Γ(s)
(−Λθ2−2α)l ζE(s+αl−d+ 1

2
)

where we use the notation ζE(s) := ζI,~0,0(s)

e.g., the Epstein zeta function for the standard quadratic form

Rich pole structure: pole of Epstein zf at

s = p/2 − αk + (d+ 1)/2 = D/2 − αk, combined with

poles of Γ, yields a rich pattern of singul for ζα(s)

Classify the different possible cases according to the

values of d and D = d+ p+ 1. We obtain, at s = 0:
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For d = 2k





if D 6= ˙2α =⇒ ζα(0) = 0

if D = ˙2α =⇒ ζα(0) = finite

For d = 2k − 1





if D 6= ˙2α





finite, for l ≤ k

0, for l > k



 =⇒ ζα(0) = finite

if D = 2αl





pole, for l ≤ k

finite, for l > k



 =⇒ ζα(0) = pole

− Pole structure of the zeta function ζα(s), at s = 0, according to the

different possible values of d and D ( ˙2α means multiple of 2α)
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For d = 2k





if D 6= ˙2α =⇒ ζα(0) = 0

if D = ˙2α =⇒ ζα(0) = finite

For d = 2k − 1





if D 6= ˙2α





finite, for l ≤ k

0, for l > k



 =⇒ ζα(0) = finite

if D = 2αl





pole, for l ≤ k

finite, for l > k



 =⇒ ζα(0) = pole

− Pole structure of the zeta function ζα(s), at s = 0, according to the

different possible values of d and D ( ˙2α means multiple of 2α)

=⇒ Explicit analytic continuation of ζα(s), α = 2, 3,

& specific pole structure
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ζα(s) =
2s−d V

(2π)(d+1)/2Γ(s)

∞∑

l=0

Γ(s+ l − (d+ 1)/2)

l! Γ(s+ αl − (d+ 1)/2)
(−2αΛθ2−2α)l

p−1∑

j=0

(detAj)
− 1

2

×
[
πj/2a

−s−αl+(d+j+1)/2
p−j Γ(s+ αl − (d+ j + 1)/2)ζR(2s+ 2αl − d− j − 1)

+4πs+αl−(d+1)/2a
−(s+αl)/2−(d+j+1)/4
p−j

∞∑

n=1

∑

~mj∈Zj

′
n(d+j+1)/2−s−αl

×
(
~mt

jA
−1
j ~mj

)(s+αl)/2−(d+j+1)/4
K(d+j+1)/2−s−αl

(
2πn

√
ap−j ~mt

jA
−1
j ~mj

)]
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ζα(s) =
2s−d V

(2π)(d+1)/2Γ(s)

∞∑

l=0

Γ(s+ l − (d+ 1)/2)

l! Γ(s+ αl − (d+ 1)/2)
(−2αΛθ2−2α)l

p−1∑

j=0

(detAj)
− 1

2

×
[
πj/2a

−s−αl+(d+j+1)/2
p−j Γ(s+ αl − (d+ j + 1)/2)ζR(2s+ 2αl − d− j − 1)

+4πs+αl−(d+1)/2a
−(s+αl)/2−(d+j+1)/4
p−j

∞∑

n=1

∑

~mj∈Zj

′
n(d+j+1)/2−s−αl

×
(
~mt

jA
−1
j ~mj

)(s+αl)/2−(d+j+1)/4
K(d+j+1)/2−s−αl

(
2πn

√
ap−j ~mt

jA
−1
j ~mj

)]

p \ D even odd

odd (1a) pole / finite (l ≥ l1) (2a) pole / pole

even (1b) double pole / pole (l ≥ l1, l2) (2b) pole / double pole (l ≥ l2)

− General pole structure of ζα(s), for the possible values of D and p

being odd or even. Magenta, type of behavior corresponding to

lower values of l; behavior in blue corresponds to larger values of l
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Future Perspectives: Oper Regulariz
Operator Regularization (OR) approach
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Future Perspectives: Oper Regulariz
Operator Regularization (OR) approach
D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)
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Future Perspectives: Oper Regulariz
Operator Regularization (OR) approach
D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)
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Future Perspectives: Oper Regulariz
Operator Regularization (OR) approach
D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

Divergences are not reabsorbed, each is removed and replaced
by an arbitrary factor
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Future Perspectives: Oper Regulariz
Operator Regularization (OR) approach
D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

Divergences are not reabsorbed, each is removed and replaced
by an arbitrary factor

OR does not cure the non-predictability problem of
non-renormalizability, but advantage that the initial Lagrangian
need not be extended with addition of extra terms
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Future Perspectives: Oper Regulariz
Operator Regularization (OR) approach
D G C McKeon and T N Sherry, Phys Rev Lett 59, 532 (1987);
Phys Rev D35, 3854 (1987)

Distinct advantage: it can be used with formally non-renormalizable
theories: R B Mann, L Tarasov, D G C McKeon and T Steele,
Nucl Phys B311, 630 (1989); A Y Shiekh, Can J Phys 74, 172 (1996)

Divergences are not reabsorbed, each is removed and replaced
by an arbitrary factor

OR does not cure the non-predictability problem of
non-renormalizability, but advantage that the initial Lagrangian
need not be extended with addition of extra terms

The OR scheme is governed by the identity:

H−m = lim
ǫ→0

dn

dǫn

[
1 +

(
1 + α1ǫ+ α2ǫ

2 + . . .+ αnǫ
n
) ǫn
n!
H−ǫ−m

]

αi’s are arbitrary, and it is enough that the degree of regularization
is equal to the loop order, n
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Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)
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Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

Effect of OR: replace the divergent poles by arbitrary constants
1

ǫn
−→ αn

to yield the finite expression

H−m = αnc−n + · · · + α1c−1 + c0
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Effect of OR: replace the divergent poles by arbitrary constants
1

ǫn
−→ αn

to yield the finite expression

H−m = αnc−n + · · · + α1c−1 + c0

Generalization
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Two separate aspects of the procedure: 1st the regularization, 2nd
analytical continuation (divergences are replaced by arbitrary factors)

Effect of OR: replace the divergent poles by arbitrary constants
1

ǫn
−→ αn

to yield the finite expression

H−m = αnc−n + · · · + α1c−1 + c0

Generalization
OR can be generalized to multiple operators, as in multi-loop cases

H−m1 · · ·H−mr = lim
ǫ→0

dn

dǫn
[
1 +

(
1 + α1ǫ+ α2ǫ

2 + · · · + αnǫ
n
)
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Effect of OR: replace the divergent poles by arbitrary constants
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−→ αn

to yield the finite expression
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(
1 + α1ǫ+ α2ǫ

2 + · · · + αnǫ
n
)

× ǫn

n!
H−ǫ−m1 · · ·H−ǫ−mr

]

Further Extension
OR was first introduced in the context of the Schwinger approach,
which is known to be equivalent to the Feynman one
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OR of the logarithm in the Schwinger approach

lnH = − lim
ǫ→0

dn

dǫn

(
ǫn−1

n!
H−ǫ

)
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(
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H−ǫ−m

)

The Schwinger form can be transformed into the Feynman one

H−m =
(−1)m−1

(m− 1)!

dm

dHm
lnH

Equivalence with dimensional regularization in many cases

Not always, problems (main one, unitarity), may appear

A Rebhan, Phys Rev D39, 3101 (1989)

its naive application to obtain finite amplitudes breaks unitarity
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No symmetry-breaking regulating parameter is ever inserted

into the initial Lagrangian

L Culumovic, M Leblanc, R B Mann, D G C McKeon and

T N Sherry, Phys Rev D41, 514 (1990)

actually use Bogoliubov’s recursion formula

to show how to construct a consistent OR operator
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Unitarity is upheld by employing a generalized evaluator

consistently including lower-order quantum corrections

to the quantities of interest

Unitarity requirements lead to unique expressions for

quantum field theoretic quantities order by order in ~

Proven in many cases (Φ4 at two-loop, etc) ... but

(to my knowledge) a universal proof is still missing
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No symmetry-breaking regulating parameter is ever inserted

into the initial Lagrangian

L Culumovic, M Leblanc, R B Mann, D G C McKeon and

T N Sherry, Phys Rev D41, 514 (1990)

actually use Bogoliubov’s recursion formula

to show how to construct a consistent OR operator

Unitarity is upheld by employing a generalized evaluator

consistently including lower-order quantum corrections

to the quantities of interest

Unitarity requirements lead to unique expressions for

quantum field theoretic quantities order by order in ~

Proven in many cases (Φ4 at two-loop, etc) ... but

(to my knowledge) a universal proof is still missing

THANK YOU!
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