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Manchester, 1963-2002
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Manchester, 1964-1965
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”...it intrigued me that one problem (charge+plane) could be gotten
from another (just charge) by geometrical reasoning plus uniqueness.
Thompson’s book (Elementary Lessons in Electricity and Magnetism)
took this further. Chapter 5 is devoted to the image and inversion
methods and I must have read this closely, at this time, as there are
lots of marginal notes...”

Physics master:
”Don’t shut out mathematics when you close the door of the physics
lab.”

Math master:
”Don’t leave your gumption outside the door when you come in!”
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”After reading Eddington c. 1960 it was clear to me (and others of
course) there is a strong analogy (at least) between gravitation and
e&m ... (His work has very strongly influenced me.) So I played a
game of asking for the gravitational analogues of existing e&m
concepts. The basic analogue is between field strength/charge and
curvature/spin.”

”...spin, in general relativity, plays the passive role that charge plays
in electromagnetism in the sense that it is the spin-curvature coupling
that knocks a particle off a geodesic.”
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”I have always been interested in exact solutions, even if unphysical,
so long as they are pretty. They seem to be working mechanisms that
fit together, complete in themselves, like a watch.”
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Motivations

Casimir energy for surfaces of revolution
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Motivations
Eigenvalue problem for a suitable differential operator P:

Pu`(x) = λ`u`(x), 0 < λ1 ≤ λ2..., λ` →∞ as `→∞.

Heat kernel:

KP(τ) =
∞∑
`=1

e−τλ`

τ→0∼
∞∑

`=0,1/2,1,...

a`(P,B) τ `−D/2

Zeta function:

ζP(s) =
∞∑
`=0

λ−s
` <s >

D

2
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Zeta function ζP(s) =
∑∞

`=0 λ
−s
` as best organization of the spectrum

Casimir energy:

” EP =
1

2

∞∑
`=0

λ
1/2
` → 1

2
ζP

(
s = −1

2

)
”

More precisely:

ζP

(
−1

2
+ ε

)
= −1

ε

1√
4π

a D+1
2

(P,B) + FP ζP

(
−1

2

)
+O(ε)
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Basic ideas in one dimensions
Let:

P = − d2

dx2
+ V (x)

Eigenvalue problem:

Pu`(x) = λ`u`(x) , u`(0) = u`(L) = 0

Consider:

Puλ(x) =

(
− d2

dx2
+ V (x)

)
uλ(x) = k2uk (x) k ∈ C

Impose the initial condition:

uk (0) = 0 , u′k (0) = 1

This defines a unique solution:

uk(x)
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Basic ideas in one dimensions

Eigenvalues for boundary value problem determined by: uk(L) = 0

Zeta function:

ζP(s) =
1

2πi

∫
γ

dk k−2s d

dk
ln uk(L)

=
sinπs

π

∞∫
0

dk k−2s d

dk
ln uik(L)
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Compactly supported potentials

Casimir force:

FCas = −1

2

∂

∂a
ζ

(
−1

2

)

=
1

2π

∞∫
0

dkk
∂

∂a

∂

∂k
ln uik(L).
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Spherically symmetric potentials

Let:
P = −∆ + V (r)

Eigenvalue problem:

Pψn,`(r ,Ω) = λ2n,`ψn,`(r ,Ω), ψn,`(a,Ω) = ψn,`(b,Ω) = 0

Radial differential equation ν = `+ d−1
2 :(

d2

dr2
+

d

r

d

dr
−
ν2 −

(
d−1
2

)2
r2

− V (r) + λ2

)
φλ,ν(r) = 0,

φλ,ν(a) = 0, φ′λ,ν(a) = 1.
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Spherically symmetric potentials

Eigenvalues for boundary value problem determined by: φλ,ν(b) = 0

Zeta function:

ζP(s) =
sinπs

π

∑
ν

dν

∞∫
0

dk k−2s d

dk
lnφik,ν(b).

Example for asymptotic term:

A−1(s) =
Γ
(
s − 1

2

)
4
√
πsΓ(s)

ζN

(
s − 1

2

)(
b2s − a2s

)
.
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Surfaces of revolution

Parameterization and metric of the surface

S =

 x
f (x) cos θ
f (x) sin θ

 , g(x) =

(
1 + (f ′(x))2 0

0 f 2(x)

)
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Surfaces of revolution

Laplacian on the surface

∆ϕ =
1√

det g
∂µ

(
gµν
√

det g ∂ν

)
ϕ

=
1

1 + (f ′)2

(
∂2ϕ

∂x2
− f ′f ′′

1 + (f ′)2
∂ϕ

∂x
+

f ′

f

∂ϕ

∂x

)
+

1

f 2

∂2ϕ

∂θ2

Eigenvalue problem for the Laplacian

ϕn,k (x , θ)=ψn,k (x) e ikθ, k ∈ ZZ =⇒

ψ′′n,k (x) + ψ′n,k (x)

(
f ′

f
− f ′f ′′

1 + (f ′)2

)
+

(
λn,k −

k2

f 2

)(
1 + (f ′)2

)
ψn,k (x) = 0

ψn,k (a) = ψn,k (b) = 0
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Surfaces of revolution

Let

u =
f ′

f
− f ′f ′′

1 + (f ′)2
, v =

(
λ− k2

f 2

)(
1 + (f ′)2

)
Consider

ψ′′ + uψ′ + vψ = 0,

ψk,λ(a) = 0, ψ′k,λ(a) = 1

Eigenvalues are determined by

ψk,λ(b) = 0

Zeta function

ζ(s) =
1

2πi

∞∑
k=−∞

∫
γ

dλ λ−s d

dλ
lnψk,λ(b), <s > 1
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Relative Casimir energy for surfaces of revolution:

E rel
Cas,asym =

1

2π
ζ ′R (−2)

b∫
a

dx

(√
1 + f ′2

f 2
− 1

c2

)

+
1

48π

b∫
a

dx
12ff ′′ − 11f ′

2
(1 + f ′

2
) + 3 ln(4πf )

[
f ′

2
(1 + f ′

2
)− 2ff ′′

]
f 2(1 + f ′2)3/2

+
1

256

b∫
a

dx
3f ′

2
(1 + f ′

2
)2 − 6ff ′f ′′(1 + f ′

2
)− 64ff ′f ′′

2
+ 8f 2f ′′′(1 + f ′

2
)

f 2(1 + f ′2)2

+
1

4π

b∫
a

dx
[√

1 + f ′2 − 1
]
.
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E rel
Cas,fin = − 1

π

∞∑
k=1

k

∞∫
0

dzz1/2 d

dz

ln
2
√

1 + zc2ϕk,−k2z (b)

1− exp
(
− 2(b−a)k

c

√
1 + zc2

)

− 1

16k

b∫
a

dx
−zf f ′

2
(−4 + zf 2)(1 + f ′

2
) + 2zf 2f ′′(1 + zf 2)

(1 + zf 2)5/2(1 + f ′2)3/2

− 1

16k2

b∫
a

dx
[
zf
{

f ′
[
−(4 + zf 2(−10 + zf 2))f ′

2
(1 + f ′

2
)2

+f (1 + zf 2)(−7 + 2zf 2)(1 + f ′
2
)f ′′ + 4f 2(1 + zf 2)2f ′′

2
]

−f 2(1 + zf 2)2(1 + f ′
2
)f ′′′

} 1

(1 + zf 2)4(1 + f ′2)3

]}
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Outlook

Casimir energies and forces for ’separable situations’ computable by
simple numerics; other boundary conditions easily obtained by
changing initial conditions.

Results available to evaluate functional determinants and Casimir
energies for surfaces of revolution

Cusp-like singularities?
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