

Diagrammatics with excited atoms

Harald R. Haakh, Universität Potsdam

Jürgen Schiefele, Universidad Complutense, Madrid Carsten Henkel, Universität Potsdam.

Topics:

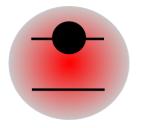
Diagrammatic techniques in molecular QED

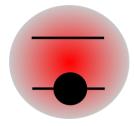
- review: excited atom vs ground state atom oscillating potentials?
- diagrammatic approach: standard and non-equilibrium
- dispersion forces and FRET

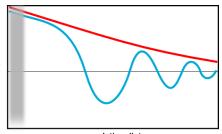
Insight

- essence of the problem in a diagrammatic form
- subtle question: what is an excited atom?

Implications in quantum optics and molecular biophysics


Intramolecular interactions: minimal molecule model



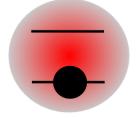

Molecules / atoms

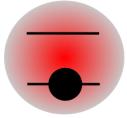
- electrically neutral, no permanent dipole.
- ▶ polarizable ↔ dipole coupling
- single electric dipole transition

Potential between a ground state atom and an excited one?

Well, there's a resonant term and ...

it oscillates!


[Philpott (1966), Gomberoff et al. (1966), Kweon and Lawandy (1993), Power and Thirunamachandran (1993)]


… no, it doesn't!

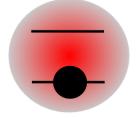
[Power and Thirunamachandran (1995), Cohen and

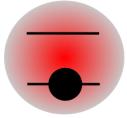
Mukamel (2003), Sherkunov (2007-2009)]

What exactly is an excited atom?

Dispersion forces

- Thermal and quantum fluctuations
- mutual induction
- potential energy
 - van der Waals (non-retarded)
 - Casimir-Polder (retarded)


But this is not yet the whole story!

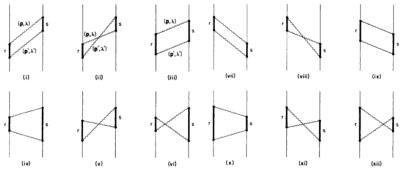


Dispersion forces

- Thermal and quantum fluctuations
- mutual induction
- potential energy
 - van der Waals (non-retarded)
 - Casimir-Polder (retarded)

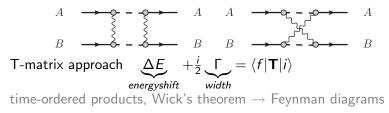
But this is not yet the whole story!



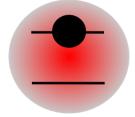

Dispersion forces

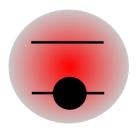
- Thermal and quantum fluctuations
- mutual induction
- potential energy
 - van der Waals (non-retarded)
 - Casimir-Polder (retarded)

But this is not yet the whole story!



Standard perturbation theory [Craig and Thirunamachandran (1984)]



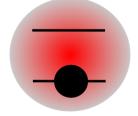

Feynman diagram technique [Schiefele and Henkel (2010)]

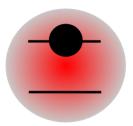
- very efficient formalism
- universal contribution (no resonances)

Excited state / ground state: FRET

Förster resonant energy transfer (FRET)

- one atom excited distinguishable, no entanglement, ...
- resonant energy transfer [Förster (1948)]
- *"A Mechanical Force Accompanies Fluorescence Resonance Energy Transfer (FRET) "*[Cohen and Mukamel (2003)]
 → Förster force


Excited state / ground state: FRET



Förster resonant energy transfer (FRET)

- one atom excited distinguishable, no entanglement, ...
- resonant energy transfer [Förster (1948)]
- *"A Mechanical Force Accompanies Fluorescence Resonance Energy Transfer (FRET) "*[Cohen and Mukamel (2003)]
 → Förster force

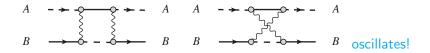
Excited state / ground state: FRET

Förster resonant energy transfer (FRET)

- one atom excited distinguishable, no entanglement, ...
- resonant energy transfer [Förster (1948)]
- *"A Mechanical Force Accompanies Fluorescence Resonance Energy Transfer (FRET) "*[Cohen and Mukamel (2003)]
 → Förster force

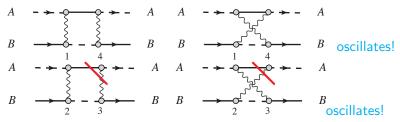
Limits of Feynman formalism and non-equilibrium QFT

Implications


- Feynman technique: $|i\rangle$ and $|f\rangle$ known \rightarrow breaks down
- decay processes contribute
- system can equilibrate

Recipe of non-equilibrium QFT: [Keldysh (1964)]

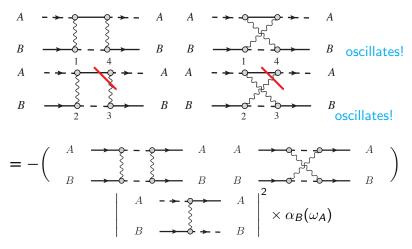
- define $|i\rangle$ (preparation)
- ► free evolution: $\langle f | \mathbf{T} | i \rangle \mapsto \langle i | S(-\infty, \infty) \mathbf{T} | i \rangle \rightarrow \text{time arrow}$
- need some more diagrams


Excited state / ground state: diagrammatics

Feynman formalism

Excited state / ground state: diagrammatics Keldysh / closed time-path contour formalism

[Sherkunov (2005), Schiefele and Henkel (2010)]


Additional processes

• other final states *constructed* behind the red line \Leftrightarrow *free* evolution: $|f\rangle = S(\infty, -\infty)|i\rangle$

time arrow

Excited state / ground state: diagrammatics Keldysh / closed time-path contour formalism

[Sherkunov (2005), Schiefele and Henkel (2010)]

negative ground-state dispersion interaction + FRET
 oscillations cancel: two-body potential does not oscillate!

Assumptions and consequences

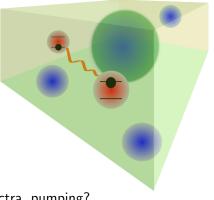
Preparation and free evolution (non-entangled, distinguishable) ⇒ non-oscillating resonant contribution

is due to the Förster transfer process

[Cohen and Mukamel (2003)]

- decay rates better known than Förster force
- well-tunable through resonance

[Cohen and Mukamel (2003), Sherkunov (2009)]


Steady (pumped) state

- could bring back the oscillations!
- analogy to excited atom-wall potential (supposedly oscillating)
- time-scales

Implications in molecular biophysics

Biochemical reactions in a cell: $A + B^* \rightarrow AB$

- diffusion limits kinetics
- pure diffusion gives too low rates [Berg et al (1981), Fröhlich (1973)]
- ► non-oscillating long range Förster force → state-selective drift [M. Pettini's group]

temperature, medium, general spectra, pumping?

Take home messages

Diagram technique

- very efficient and intuitive
- non-equilibrium situations are subtle

Ground state atom vs. excited atom

- ancient but obscure problem
- review the conditions of the formalisms used
- ► free evolution after preparation → no oscillation, life-time consistent with Förster transfer

Highly relevant implications from quantum optics to biophysics

Know what you mean when you say excited atom!

Details: Closed time contour formalism

Green's function, e.g. atom,

$$g(r',r) = \langle f | \overbrace{TS(\infty,-\infty)\Psi(r')\Psi^{\dagger}(r)}^{\text{time ordering}} | i \rangle$$
$$\langle f | = \langle i | S(-\infty,\infty)$$

$$g(r', r) = \langle i | S(-\infty, \infty) TS(\infty, -\infty) \Psi(r') \Psi^{\dagger}(r) | i \rangle$$

=: $\langle i | \underbrace{T_c S_c(-\infty, -\infty) \Psi(r') \Psi^{\dagger}(r)}_{\text{contour ordering}} | i \rangle$

t

evolution of the initial state

determination of the final state

Details: Formulae

$$\begin{array}{ccc}
\overset{\omega}{\underset{\omega_{\text{in}}}{\overset{\omega}{\underset{\omega_{\text{in}}}}}} & = -i \int \frac{d\omega}{2\pi} \frac{D_{11}(\omega, r_B, r_B)}{\omega - \omega^B + i\epsilon}
\end{array}$$

Now dress the photon propagator D_{11} by the second (excited atom)

$$D_{11}^{g,e}(x',x) = -i \int dx_1 \int dx_2 \{ \\ D_{11}(x',x_1) \Pi_R^e(x_1,x_2) D_{11}(x_2,x) - \\ - D_{11}(x',x_1) \Pi_{12}^e(x_1,x_2) D_{11}(x_2,x) + \\ + D_{11}(x',x_1) \Pi_{12}^e(x_1,x_2) D_{11}(x_2,x) - \\ - D_{11}(x',x_1) \Pi_{12}(x_1,x_2) D_A(x_2,x) + \\ + \mathcal{O}(D_{12},\Pi_{22}) \} .$$