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The Conical Piston

The generalized cone is defined as the D = d + 1 dimensional compact
manifold M = I × N , with I ⊆ [0, b] , and with N representing a
smooth, compact Riemannian d-dimensional base manifold. M is
locally described by the line element

ds2 = dr2 + r2dΣ2
N , r ∈ I .

Piston Configuration

• Na is a cross section of M at r = a ∈ (0, b).

• Na naturally divides M in two regions

• MI = [0, a] × N , with ∂MI = {0} ∪ Na,
• MII = (a, b] × N , with ∂MII = Na ∪ Nb,

• The piston configuration is MI ∪Na
MII , where the piston itself

is modelled by the cross section Na.

Remark: MI and MII have different geometry unlike standard
Casimir pistons.



Analysis on the Conical Piston

Let ϕi ∈ L2(M ) with i = (I, II), we consider the eigenvalue equation

(

−∆M + m2
)

ϕi = α2
i ϕi ,

where, on the generalized cone, ∆M is an operator of Bessel type

∆M =
∂2

∂r2
+

d

r

∂

∂r
+

1

r2
∆N .

Solutions: By setting α2
i = γ2

i + m2,

• For Region I; ϕI = r
1−d
2 Jν(γIr)Φ(Ω).

• For Region II; ϕII = r
1−d
2

[

AJν(γIIr) + B Yν(γIIr)
]

Φ(Ω),

where

∆N Φ(Ω) = −λ2Φ(Ω) , ν2 = λ2 +
(1 − d)2

4
.



Spectral Zeta Function and Casimir Energy

The spectral zeta function associated with the conical piston can be
written as

ζ(s) = ζI(s) + ζII(s) , where ζi(s) =
∑

γi

(

γ2
i + m2

)−s
.

In this framework, by setting s = −1/2 + α, the Casimir energy is
found when α → 0

ECas(a) =
1

2
FPζ

(
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2
, a

)

+
1

2

(

1

α
+ lnµ2

)

Res ζ

(
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2
, a

)

+ O(α) ,

and the corresponding force on the piston is

FCas(a) = − ∂

∂a
ECas(a) .

Remark: An unambiguous prediction of the force can be obtained
only if ∂

∂a
Res ζ

(

− 1
2 , a

)

= 0.



Dirichlet Boundary Conditions

Boundary conditions will provide implicit equations for the
eigenvalues γi which are used to explicitly compute ζI(s) and ζII(s).
Dirichlet Boundary Conditions

• Dirichlet BC’s on ∂MI lead to

Jν(γIa) = 0 .

• Dirichlet BC’s on ∂MII lead to

{

AJν(γIIa) + B Yν(γIIa) = 0
AJν(γIIb) + B Yν(γIIb) = 0 ,

which has a non-trivial solution for (A, B) if

Pν(γII , a, b) = Jν(γIIa)Yν(γIIb) − Jν(γIIb)Yν(γIIa) = 0 .



Analytic Continuation of the Spectral Zeta Function

We represent the spectral zeta function in terms of a contour integral.
In region I we have

ζI(s, a) =
∑

ν

d(ν)
1

2πi

∫

Γ

dk
[

k2 + m2
]−s ∂

∂k
ln

[

k−νJν(ka)
]

,

which is valid for ℜ(s) > D/2.
The analytic continuation to the domain ℜ(s) ≤ D/2, can be
performed and leads to the result

ζI(s) = ZI(s, a) +

D
∑

i=−1

A
(I)
i (s, a) .

• ZI(s, a) ∼ a2sf(s) is an analytic function for −1 < ℜ(s) < 1/2.

• A
(I)
i (s, a) ∼ a2sgi(s) are meromorphic functions of s expressed in

terms of ζN (s) =
∑

ν d(ν)ν−2s.



Analytic Continuation of the Spectral Zeta Function

A similar argument can be used for the analytic continuation of the
spectral zeta function in region II

ζII(s, a, b) =
∑

ν

d(ν)
1

2πi

∫

Γ′

dκ
[

κ2 + m2
]−s ∂

∂κ
lnPν(κ, a, b) ,

and leads to the result

ζII(s, a, b) = ZII(s, a, b) + FD(s, a, b) +

D
∑

i=−1

A
(II)
i (s, a, b) .

• ZII(s, a, b) ∼ a2sf̃(s) + b2sg̃(s) is an analytic function for
−1 < ℜ(s) < 1/2.

• FD(s, a, b) is an analytic function for ℜ(s) < 1/2.

• A
(II)
i (s, a, b) = (−1)iA

(I)
i (s, a) + A

(I)
i (s, b).



Casimir Force for Dirichlet Boundary Conditions

By taking the limit as s → −1/2 in ζI(s, a) and ζII(s, a, b) and by
differentiating with respect to a we obtain the following expression for
the Casimir force on the piston

FDir
Cas(a, b) =

1

a2
HD[N ] − 1

2
F

′
D(−1/2, a, b) +

1

a2

(

1

α
+ lnµ2

)

GD[N ] .

Limiting Behavior

• Large a and b. In this situation q = b/a − 1 → 0 and we obtain

FDir
Cas(q) =

Γ(D + 1)ζR(D + 1)

2D+1
√

π Γ
(

D
2

)

A N
0

qD+1
+ O

(

q−D
)

.

• Limit a → 0. In this case F ′
D(−1/2, a, b) is subleading and

FDir
Cas(a) ∼ 1

a2
HD[N ] +

1

a2

(

1

α
+ lnµ2

)

GD[N ] + O(a−1) .



Neumann Boundary Conditions

Neumann Boundary Conditions: by denoting β = (1 − d)/2

• Neumann BC’s on ∂MI lead to

βJν(aγI) + aγIJ
′
ν(aγI) = 0 ,

• Neumann BC’s on ∂MII lead to

{

A [βJν(aγII) + aγIIJ
′
ν(aγII)] + B [βYν(aγII) + aγIIY

′
ν(aγII)] = 0

A [βJν(bγII) + bγIIJ
′
ν(bγII)] + B [βYν(bγII) + bγIIY

′
ν(bγII)] = 0 .

which possesses a non-trivial solution for (A, B) if

[βJν(aγII) + aγIIJ
′
ν(aγII)] [βYν(bγII) + bγIIY

′
ν(bγII)]

− [βYν(aγII) + aγIIY
′
ν(aγII)] [βJν(bγII) + bγIIJ

′
ν(bγII)] = 0 .



Analytic Continuation

The analytic continuation in this case proceeds along the same lines.
For region I we have

ζNI (s, a) = WI(s, a) +

D
∑

i=−1

A
(N ,I)
i (s, a) .

• WI(s, a) ∼ a2sh(s) is an analytic function for −1 < ℜ(s) < 1/2.

• A
(N ,I)
i (s, a) ∼ a2sl(s) are meromorphic functions of s expressed

in terms of ζN (s).

For region II we obtain

ζNII (s, a, b) = WII(s, a, b) + FN (s, a, b) +
D

∑

i=−1

A
(N ,II)
i (s, a, b) ,

• WII(s, a, b) ∼ a2sh̃(s) + b2s l̃(s) is an analytic function for
−1 < ℜ(s) < 1/2.

• FN (s, a, b) is an analytic function for ℜ(s) < 1/2.

• A
(N ,II)
i (s, a, b) = (−1)iA

(N ,I)
i (s, a) + A

(N ,I)
i (s, b).



Casimir Force for Neumann Boundary Conditions

From the expressions for ζNI (s, a) and ζNII (s, a, b) one obtains the
following expression for the Casimir force on the piston

FNeu
Cas (a, b) =

1

a2
HN [N ]− 1

2
F

′
N (−1/2, a, b)+

1

a2

(

1

α
+ lnµ2

)

GN [N ] .

Limiting Behavior

• Large a and b. In this situation q = b/a − 1 → 0 and we obtain

FNeu
Cas (q) ∼ FDir

Cas(q) .

• Limit a → 0. In this case F ′
N (−1/2, a, b) is subleading and

FNeu
Cas (a) ∼ 1

a2
HN [N ] +

1

a2

(

1

α
+ lnµ2

)

GN [N ] + O(a−1) .



Dirichlet Boundary Conditions

d-dimensional sphere as base manifold N .
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Figure: Plots of the Casimir force, FDir

Cas(a, 1), on the piston N for Dirichlet
boundary conditions as a function of the position a.



Neumann Boundary Conditions

d-dimensional sphere as base manifold N .
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Figure: Plots of the Casimir force, FNeu

Cas (a, 1), on the piston N for
Neumann boundary conditions as function of the position a.



Hybrid Boundary Conditions
First Type: Dirichlet BC’s at r = a, Neumann BC’s at r = b

Jν(γIa) = 0 ,

{

AJν(γIIa) + BYν(γIIa) = 0
A [βJν(γIIb) + γIIbJ

′
ν(γIIb)] + B [βYν(γIIb) + γIIbY

′
ν(γIIb)] = 0 ,

from the second condition we have

Jν(γIIa) [βYν(γIIb)+γIIbY
′
ν(γIIb)]−Yν(γIIa) [βJν(γIIb)+γIIbJ

′
ν(γIIb)] = 0 .

Second Type: Neumann BC’s at r = a, Dirichlet BC’s at r = b

βJν(γIa) + aγIJ
′
ν(γIa) = 0 ,

{

A [βJν(γIa) + aγIJ
′
ν(γIa)] + B [βYν(γIa) + aγIY

′
ν(γIa)] = 0

AJν(γIIb) + BY ′
ν(γIIb) = 0 ,

from the second condition we have

Yν(γIIb) [βJν(γIIa)+γIIaJ ′
ν(γIIa)]−Jν(γIIb) [βYν(γIIa)+γIIaY ′

ν(γIIa)] = 0.



Casimir Force for Hybrid Boundary Conditions

By setting j = (1, 2) to denote HBC’s of first and second type we have

F
Hj

Cas(a, b) =
1

a2
PHj

[N ]−1

2
F

′
Hj

(−1/2, a, b)+
1

a2

(

1

α
+ lnµ2

)

QHj
[N ] .

Limiting Behavior

• Large a and b. In this situation q = b/a − 1 → 0 and we obtain

F
Hj

Cas(q) ∼ −FDir
Cas(q) .

• Limit a → 0. In this case F ′
Hj

(−1/2, a, b) is subleading and

F
Hj

Cas(a) ∼ 1

a2
PHj

[N ] +
1

a2

(

1

α
+ lnµ2

)

QHj
[N ] + O(a−1) .



Hybrid Boundary Conditions of First Type
Dirichlet BC’s at r = a, and Neumann BC’s at r = b

d-dimensional sphere as base manifold N .
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Figure: Plots of the Casimir force, F
H1

Cas
(a, 1), on the piston N for hybrid

boundary conditions of first type as a function of the position a.



Hybrid Boundary Conditions of Second Type
Neumann BC’s at r = a, and Dirichlet BC’s at r = b

d-dimensional sphere as base manifold N .
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Figure: Plots of the Casimir force, F
H2

Cas
(a, 1), on the piston N for hybrid

boundary conditions of second type as a function of the position a.



Summary of the Main Points

Differences between conical pistons and standard Casimir pistons.

• Presence of a singularity at the origin. Furthermore, the conical
piston is a curved manifold.

• The two chambers of the conical piston have different geometry.

• Hybrid BC’s of first and second type lead to different results for
the Casimir force on the piston.

• The Casimir force is, in general, not symmetric with respect to
the point r0 = b/2.



Outlook and Generalizations

• Study of Casimir pistons modelled after the spherical suspension
(or Riemann cap). This is a singular Riemannian manifold with
line element

ds2 = dθ2 + sin2 θdΣ2
N , θ ∈ [0, π) .

• More generally, one can consider Casimir pistons modelled after
compact manifolds described by the line element

ds2 = dr2 + f2(r)dΣ2
N .

• Case 1: f(r) ∼ rδ, δ > 0 and δ 6= 1, as r → 0. Would allow the
analysis of singularities other than the conical one.

• Case 2: f(r) ∼ C as r → 0 (Warped Product Manifolds). The
two chambers have a different geometry but none of them
contains a singularity.

• Extend the analysis of the conical Casimir piston to include finite
temperature effects.
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