
Introduction Dirac-Pauli eq. General aspects in QFT Nonuniform �elds Conclusions

Creation of Neutral Fermions by Magnetic Barriers

Tiago Adorno†

T. C. Adorno†, S. P. Gavrilov�,† and D. M. Gitman†

†Department of Nuclear Physics, University of Sao Paulo, Brazil,
�Herzen State Pedagogical University of Russia.

22 de September 2011

Financial support by FAPESP



Introduction Dirac-Pauli eq. General aspects in QFT Nonuniform �elds Conclusions

Overview and Motivation

1 An inhomogeneous magnetic �eld (MF) can produce work on
neutral fermions with anomalous magnetic moment=)They
can create neutral fermions from vacuum.

2 Examples: Neutron (µn = �1.9130427(5)µN , µN = e/2mN )
and possible Neutrinos†,

3 MF up to 1018G can be generated during a supernova
explosion (can create neutrino-antineutrino pairs),

4 MF around B � 1019G, can be generated in heavy-ion
collisions at RHIC and LHC,

5 Superconducting cosmic string could generate �elds more then
1030G in their vicinities. Bncr � 1020G can create
neutron-antineutron pairs.

†C. Giunti, A. Studenikin, (2009), M. Dvornikov, arXiv:1011.4300, M. Deniz, et al, (2010)and A.G. Beda, et al
(2007).
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Dirac-Pauli equation†
Relativistic description of spin 1/2 neutral fermions

�
γµp̂µ �m�

µ

2
σµνFµν (x)

�
ψ (x) = 0 ,

p̂µ = i∂µ , σµν =
i
2
[γµ,γν]� .

External magnetic �eld: Nonuniform and constant in
z-direction:B (y) = (0, 0,Bz (y)) , Bz (y) = F21 (y) .
The complete set of solutions is

ψn (t, r) = exp (�ip0t + ipxx + ipzz)ψn (y) ,

where� ψn (y): eigenvectors of mutually commuting of p̂
0, p̂1, p̂3,

R and Π̂z = π̂z � µBz (y) ,

R =
h
1+ (pz/ω)2

i�1/2 �
sγ0γ3pz/ω+ γ0Σz

�
,

π̂z = Σz
�
γ1px + γ2p̂2

�
+mΣz ,

†W. Pauli, Rev. Mod. Phys. 13 (1941). �S. P. Gavrilov and D. M. Gitman, arXiv:1101.4243.
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Eigenvalue and quadratic equation

Rψn (y) = sψn (y) , s = �1, p0 = ω

q
1+ (pz/ω)2,

[π̂z � µBz (y)� sω]ψn (y) = 0 , n = (px , pz ,ω, s) .

ψn (y) can be presented as

ψn (y) =
1
4
(1+ sR) [π̂z + µBz (y) + sω] ϕn,χ (y)

�
1+ iχγ1

�
v ,n

�∂2y +m
2 + p2x + iχµ∂yBz (y)� [ω+ sµBz (y)]2

o
ϕn,χ (y) = 0.

1 The problem is technically reduced to the problem of
charged particle in a �eld given by a nonlinear scalar
potential. Thus we can use results elaborated for the pair
creation by electric barriers (Klein e¤ect)†.

†A. I. Nikishov, Nucl. Phys. B 21 (1970).
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Structure of the external magnetic �elds

1 We will consider external magnetic �elds which are
homogeneous at asymptotic regions y ! �∞.

2 The �elds and its derivative obeys Bz (�∞) ? 0 and
∂yBz (y) > 0, respectively.
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Asymptotic conditions and inner product

1)At y ! �∞ the MF is homogeneous: Thus we construct two
sets

�
ζψn (t, r)

	
and

�
ζψn (t, r)

	
of independent solutions,

�i∂y ζψn (t, r) = ζpy ζψn (t, r) , ζ = sign ζpy , y ! �∞ ;

�i∂y ζψn (t, r) = ζpy ζψn (t, r) , ζ = sign ζpy , y ! +∞ .

2)MF exist during a su¤. large time T ! ∞. Then one can
ignore e¤ects of its switching on and o¤�

ψn,ψ
0
n0
�

σ
=
Z

σ
ψn (t, r) γµψ0n0 (t, r) dσµ �! (ψn,ψn0)y ,

(ψn,ψn0)y =
Z
Vy=T .Lx .Lz

ψ†
n (t, r) γ0γ2ψn0 (t, r) dtdxdz ,

3)ψn (t, r) satisfy the periodic conditions in t, x , z with su¢ ciently
large periods Lx , Lz ! ∞.
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Orthonormality relations

By using the asymptotic conditions, we satisfy the orthonormality
relations�

ζψn,ζ 0 ψn0
�
y
= ζηLδζ,ζ 0δn,n0 ;

�
ζψn,

ζ 0 ψn0
�
y
= ζηR δζ,ζ 0δn,n0 ,

where

ηL = signπs (L) , ηR = signπs (R) ;

πs (L/R) = ω� sUL/R ; πs (L) = πs (R) + sU;

U = UR � UL > 0 ,
UL = �µBz (�∞) < 0, UR = �µBz (+∞) > 0 .
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Orthonormality relations

Two complete sets ζψn (t, r) and
ζψn (t, r) are related as follows:

ηL
ζψn (t, r) = +ψn (t, r) g

�
+

���ζ �� �ψn (t, r) g
�
�
���ζ � ;

ηR ζψn (t, r) = +ψn (t, r) g
�
+
��
ζ

�
� �ψn (t, r) g

�� ��
ζ

�
,

where�
ζψn,

ζ 0ψn0
�
y
= δnn0g

�
ζ

���ζ 0 � , g �ζ 0
��
ζ

�
= g

�
ζ

���ζ 0 ��
Unitarity relations:

g
�

ζ 0 j+
�
g
�
+

���ζ �� g �ζ 0 j�
�
g
�
�
���ζ � = ζηLηR δζ,ζ 0 ;

g
�

ζ 0
��+� g �+ ��ζ �� g �ζ 0

���� g �� ��ζ � = ζηLηR δζ,ζ 0 .

Then g (+ j+ ) and g (+ j� ) are independent.
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General aspects of the QFT description†

Classical description: Classi�cation of particle/antiparticle states
1 The classical energy on the xy plane is��ω�

cl

�� = qp2x + p2y (y) +m2 � s jµjBz (y) , Bz (�∞) ? 0 ,

1 s = +1: Bz (y) accelerates antiparticle along the axis y ,
particles - in the opposite direction.

2 s = �1: Bz (y) accelerates particle along the axis y ,
antiparticles - in the opposite direction.

3 It is enough to consider only one case, let say s = +1.

†S. P. Gavrilov and D. M. Gitman, (in preparation).
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General aspects of the QFT description

Constraints on the external MF for the particle creation case
1 If,

U = �µ [Bz (+∞)� Bz (�∞)] > 2πx ,

�
πx =

q
p2x +m2

�
,

�µBz (�∞) + πx � ω � �µBz (+∞)� πx

�nal particles are situated in the range SLand �nal
antiparticles in the range SR =)Particle creation range.

2 Inner product on hyperplane t = const�
ψ,ψ0

�
t =

Z
t

ψ† (t, r)ψ0 (t, r) dr .

and standard QFT particle-antiparticle classi�cation.
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Orthogonality relation on hyperplane t=const

�
ψn,ψ

0
n0
�
t = δn,n0LxLzR, R =

Z L2

�L1
Qdy ,

Q = ϕ�n,χ (y)
�

π2x +
�

ω+ sµBz (y) + sχi
�!
∂ y

�2�
ϕ0n,χ (y) ,

where L1, L2 ! ∞ are parameters of volume regularization.
Integral R can be represented as

R =
Z yL

�L1
Qdy +

Z yR

yL
Qdy +

Z L2

yR
Qdy

The leading contribution of R are RL � L1 and RR � L2. Both
are from asymptotic ranges,

R = RL +RR , RL =
Z yL

�L1
QLdy , RR =

Z L2

yR
QRdy ,

QL/R =
�

ϕn,χ (y)
�� �

π2x +
�

πs (L/R) + sχi
�!
∂ y

�2�
ϕ0n,χ (y) .
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Orthogonality of the wave functions

We can show that the orthogonality relation,�
ζψn,

ζ ψn

�
t
= 0 ,

holds if L1 and L2 satisfy the condition

L1

����πs (L)
ζpy

����� L2 ����πs (R)ζpy

���� = 0 ,
where�

ζpy
�2
= [πs (L)]

2 � π2x � 0,
�

ζpy
�2
= [πs (R)]

2 � π2x � 0.

This relation express the ortogonality of particle and antiparticle
wave functions at given time instant.

We relate standard picture of stationary scattering by
one-dim. potential barrier, which is normally used in
QM, with standard QFT description that based on an
inner product on hyperplane t = const.
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In- and out- states

1 Sign of the physical momentum of particles obeys pphy = py .
For antiparticles pphy = �py

2 +ψn (t, r) and +ψn (t, r) describe outgoing particles and
antiparticles

3 �ψn (t, r) and �ψn (t, r) describe incoming particles and
antiparticles

4 IN vacuum: absence of incoming (anti)particles=)Presence
of outgoing (anti)particles indicates stationary creation of
pairs from the vacuum.

By decomposing the component of QF operator with n 2 Ω, we
de�ne creation and annnihilation operators,

Ψn (t, r) =M�1/2
h
an (out) +ψn (t, r) + b

†
n (out) +ψn (t, r)

i
,

Ψn (t, r) =M�1/2
h
an (in) �ψn (t, r) + b

†
n (in) �ψn (t, r)

i
,

M = 2 (L2/T )
���πs (R) / ζpy

��� ��g �+ ��� ���2 ,
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Bogolyubov transformation

Nonzero canonical anticommutation relations:

[an(in), a†
k (in)]+ = [an(out), a†

k (out)]+ = δnk .

[bn(in), b†
k (in)]+ = [bn(out), b†

k (out)]+ = δnk .

The in-vacuum j0, ini and out-vacuum j0, outi de�nitions:

an (in) j0, ini = bn (in) j0, ini = 0, 8n;
an (out) j0, outi = bn (out) j0, outi = 0, 8n.

(Bogolyubov transformation):

an (out) = g
�� j+ ��1 g �+ j+ � an (in)� g �� ��+ ��1 b†

n (in) ,

b†
n(out) = g

�� j+ ��1 an (in) + g �� ��+ ��1 g �+ ��+ � b†
n(in).
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Mean number of created pairs

Di¤erential mean number of created particles and antiparticles

N (+)n = h0, inj a†
n (out) an (out) j0, ini =

��g �� ��+ ����2 ,
N (�)n = h0, inj b†

n (out) bn (out) j0, ini =
��g �+ ��� ����2 .

Mean number of created pairs:

N (+)n = N (�)n = Nn,

Total number of created pairs:

N = ∑
n
Nn.

Probability for the vacuum to remain a vacuum:

Pv = jcv j2 = exp
�

∑
n
ln (1�Nn)

�
.
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Linearly growing magnetic �eld

The quadratic equation can be written as WPC di¤. eq.,

�
� d2

dy2
� [ω+ sµBz (y)]2 +m2 + p2x + iχµ

d
dy
Bz (y)

�
ϕn,χ (y) = 0 ,
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Linearly growing magnetic �eld

�
d2

dξ2
� ξ2 � λ+ iχ

�
ϕn,χ (ξ) = 0 , ξ (y) =

jµj (B 0y + B0)�ωp
jµjB 0

then the coe¢ cient g (+j�) is,

g
�
+j�

�
= e

iπ
4 e

i ν̃π
2

s
jpy (y1)j q̃1 jpy (y2)j

8 jµjB 0q̃2
�
f̃2 (y2) f̃1 (y1)� f̃1 (y2) f̃2 (y1)

�
,

f̃1 (y) =
�
1� i

jpy (y)j
∂y

�
D�ν̃�1 [(1+ i) ξ (y)] , y1 = �

L
2
,

f̃2 (y) =
�
1� i

jpy (y)j
∂y

�
Dν̃ [(1� i) ξ (y)] , y2 = +

L
2
,

λ =
p2x +m

2

jµjB 0 , ν̃ = � iλ
2
, q̃i = jpy (yi )j � (�1)i [ω+ µBz (yi )] .
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Linearly growing magnetic �eld
Asymptotic expression for the mean and total number of fermions created

For
p
jµjB 0L� 1, m2/ jµjB 0 we have,

Nn =
��g �+j�����2 ' e�λπ

�
1+

1
2

q
λ (1� e�λπ)�

�
"
1

jξ1j
3 sin φ1 +

1

ξ32
sin φ2

#)
,

φi =
�π

4
+ arg Γ (ν̃) + λ ln

p
2 jξ i j � ξ2i

�
, i = (1, 2) .

The total number is calculated as

N =
LxLzT

(2π)3
∑
s=�1

Z
dpxdpz

Z ω2
max

0

Nndω2p
ω2 + p2z

,

where is ωmax = jµB 0j L/2.
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Linearly growing magnetic �eld
Asymptotic expression for the total number of fermions created

Final expressions: Total mean number

N =
(1+ ln 4)TLxLzL2 jµB 0j5/2

16π3
exp

�
� πm2

jµB 0j

�
.

Unlike the case of electric �eld, mean density N/V � L. Then the
total quanities are very sensitive to the length L of magnetic �eld
inhomogeneity.
Vacuum-to-vacuum transition probability

Pv = exp (�βN) , β =
∞

∑
l=0
(l + 1)�3/2 exp

�
� lπm

2

jµB 0j

�
.
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Sauter type magnetic �eld

Bz (y) = αB tanh
�y

α

�
, ∂yBz (y) = B cosh�2

�y
α

�
.
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Sauter type magnetic �eld
Mean number of fermions created

Nn =
��g ��j+����2

=
sinh

�
παβ�

�
sinh

�
παβ+

�
sinh

�
πα
2

�
β� � β+ + 2 jµj χB

��
sinh

�
πα
2

�
β+ � β� + 2 jµj χB

�� ,
β� =

q
(ω� jµjB)2 � p2x �m2 ,

For α �
�
1+

p
λ
�

/
p
jµjB 0,

Nn = e�πλ .
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Conclusions

Consistent QFT description of neutral particle creation
(due to their magnetic moments) by magnetic barriers is
formulated
Problem is technically reduced to the problem of charge
particle creation by an electric barrier
Features of neutral particle creation from the vacuum by
a growing magnetic �eld is studied
This mechanism may be responsible for the creation of
neutrino-antineutrino pair during the formation of a
neutron star.
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THANKS !
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