
Introduction Some restrictions on external electromagnetic �elds Calculations of back reaction Conclusion

Generalizations of Heisenberg-Euler Energy
to Strong Electric Fields

S.P. Gavrilova,b and D.M. Gitmanb



Introduction Some restrictions on external electromagnetic �elds Calculations of back reaction Conclusion

External �eld in QFT

QFT in an external background is an e¤ective model when a
part of a quantized �eld is strong enough to be treated as a given
(external) classical one. E.g., QED with an external
electromagnetic �eld formally arises as

jµAµ ! jµ
�
Aµ + Aext

µ

�
.

This is naturally implied as a certain approximation. In fact, it
is supposed that a quantum processes under consideration does
not a¤ect signi�cantly the external �eld (back-reaction is
supposed to be small). Due to new challenges in astrophysics,
discovery of quark-gluon plasma, heavy ions collisions, and creation
of such materials as graphene the problem of strong external
�eld impact on the physical vacuum and the corresponding
backreaction has already become of practical interest.
Back-reaction has to be calculated to answer the question of a
consistency of theories with external backgrounds.
First of all: A constant uniform electromagnetic �eld.
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Particle creation from the vacuum

Both magnetic and electric �elds polarize the vacuum, but only
the electric �eld can produce the work acting on charged
particles, even virtual ones, then destroying the physical vacuum.
Qualitatively: if an electric �eld is strong enough, it can pass to a
virtual electron-positron pair energy greater than its rest mass
2mc2 to transform them into real particles. The vacuum is
practically stable if E � Ec ,

eEc � 2λ = 2mc2
λ=�h/mc
=) Ec =

m2c3

e�h
� 1, 3 � 1016V/cm .

Creating pairs from the vacuum, the super strong electric �eld
loses its energy and thus destroys itself. That is why the
principal part of the backreaction is due to the particle creation but
not to the vacuum polarization.
Fradkin,Gitman,Shvartsman, QED with Unstable Vacuum (Springer 1991).
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Heisenberg-Euler Lagrangian and maximal magnetic �eld

Heisenberg, Euler (1936): change of vacuum energy in QED with
constant E � Ec and B k E �elds.

E0 = �∑
p,r

�
ε
(�)
p,r � ε

(�)
p,r

���
B=0

�
ε
(�)
p,r , ε

(�)
p,r =

q
m2 + p2? + (p3)

2

Thus, they obtained a change ∆LM of M. L. LM. For
E = 0, B � Bc = m2c3/e�h = 4, 4 � 1013G:

∆LM = �
�

α

3π
ln
B
Bc

�
LM , LM =

�
E 2 � B2

�
/8π, α = e2/�hc .

However, in such calculations: the loop expansion makes sense
only for the magnetic �elds B � Bmax ,

Bmax = Bc exp
�
3π

α

�
� Bc10560

�
Bc

4
exp

�
π3/2
p

α
+ 1, 2

�
� Bc1028

�
Ritus (Sov.Phys.JETP,1975;77); Shabad,Usov, taking into acc. the
interaction of virtual particle interaction (PRL, 2006).
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Schwinger e¤ective Lagrangian

cv = h0, outj0, ini = exp
�
i
�h

Z
dxLeff

�
, Pv = jcv j2.

For E = const., the probability Pv is related to ImLeff as follows
(Schwinger, Phys.Rev.82 (1951) 664):

Pv = jcv j2 = exp
�
�VTc

�h
2 ImLeff

�
= exp f�µNg ,

µ =
∞

∑
l=0
(l + 1)�d/2 exp

�
�πl

Ec

E

�
in d� dim

Total number of created particles for T and V (Nikishov, 1970;
Gavrilov, Gitman, PRD53 (1996) 7162):

N =
VTcJ

(2π)d�1 λd

�
E
Ec

�d/2

exp
�
�π

Ec

E

�
, J = 2[

d
2 ]�1

Thus, the vacuum instability is essential for E � Ec !
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Restrictions on electric �eld from Schwinger EL

∆LM = Leff. In the case E � Ec, B = 0, d = 4

Re Leff = �
αE 2

24π2
ln
E
Ec
=) ∆EM = Re Leff < 0 .

Thus, the total energy density of the electric �eld vanishes at Emax,

E = EM+∆EM = 0 at E � Emax = Ec exp
�
3π

α

�
� Ec exp

�
103
�
.

However, Emax cannot be considered a maximal strength of
external constant electric �eld.

E
∂ ReLeff

∂E
� ReLeff = w

c (t) = Reh0, outjT00 (t) j0, inic�1v local,

w (t,T ) = h0, injT00j0, ini, w � w c = wp (T ) 6= 0 total

Re Leff describs e¤ects of vacuum polarization only. The
complete back-reaction can be obtained by nonperturbative
calculating the mean value of the energy-momentum tensor
of matter, Tµν.
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T-constant electric �eld

In QED, it was caculated the mean value of the energy
density of matter in one-loop approximation, w (t,T ), taking
an exact account of the interaction with T -const. electric
�eld (Gavrilov, Gitman (PRD78, 2008; PRL 101, 2008)
T -const. EF turns on to E at �T/2 = t1 and turns o¤ to 0 at
T/2 = t2.

A1(t) = �Et, t 2 [t1, t2], being constant for t 2 (�∞, t1) and
t 2 (t2,+∞).
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L-constant electric �eld

In recent modi�cation of QED, it was caculated the mean
value of the energy density w (t, L), taking an exact account
of the interaction with electric potential barrier in the form
of L-const. electric �eld (Gavrilov, Gitman (paper in preparation).
L-const. EF turns on to E at �L/2 = xL and turns o¤ to 0 at
L/2 = xR .
A0(x) = Ex , x 2 [xL, xR ], being uniform for x 2 (�∞, xL) and
x 2 (xR ,+∞).
It is a time-independent nonuniform electric �eld that vanishes at
the spatial in�nity
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T- and L-constant electric �eld

In case cT , L� Lstab,

Lstab =

r
c�h
eE
[1+ Ec/E ] ,

dLstab

dE
< 0, LstabjE=Ec = 2λ � c � 1, 3 � 10�21s � 4 � 10�13m ,

all �nite e¤ects of particle-creation reach their asymptotic values,
whereas the details of switching the �eld on and o¤ can be
neglected (Gavrilov, Gitman, PRD53 (1996) 7162).
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Vacuum energy change in T-const. EF

w = h0, injT00j0, ini =
1
2
h0, inj

h
ψ̂(x)†, ĤDψ̂(x)

i
j0, ini

����
t=T /2�0

,

w = hĤQED i
V , ĤD is Dirac Hamiltonian; ψ̂(x) obey Dirac Eq. with

Aµ(x).
We have a complete account of vacuum polarization as well as
pair-creation during the entire time T .

w =
1
4

�
lim

t 0!t�0
+ lim
t 0!t+0

�
tr (∂t 0 � ∂t ) Sin(x , x 0)

��
x=x0,t=t2�0 .

Here Sin(x , x 0) is in� in GF,

Sin(x , x 0) = ih0, injTψ(x)ψ̄(x 0)j0, ini = Sc (x , x 0) + Sp(x , x 0) ,
Sc (x , x 0) = ih0, outjTψ(x)ψ̄(x 0)j0, inih0, outj0, ini�1,
Sc (x , x 0) is Feynman causal GF, and Sp(x , x 0) obeys Dirac Eq.
j0, ini - initial free particle vacuum at t ! �∞;
j0, outi - �nal free particle vacuum at t ! +∞.
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Vacuum energy change in L-const. EF

w = h0, injT00j0, ini =
1
2
h0, inj

h
ψ̂(x)†, ĤDψ̂(x)

i
j0, ini

����
x=L/2�0

,

In the idealized picture, which we consider here, the external �eld
acts during a large time T ! ∞, beeng time independent within
this time interval T , such that one can ignore e¤ects of its
switching on and and o¤. This allows us to believe that time
dependence of wave functions is trivial. Considering the
one-particle mean energy and electric current through surface
x = const, we can identify initial and �nal particle and antiparticle
states then to show that j0, ini - initial free particle vacuum at
t ! �∞; j0, outi - �nal free particle vacuum at t ! +∞.
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Vacuum polarization

The separation of Sin into the c- and p-parts is responsible for the
separation of w into the two respective summands w = w c + wp .

w c is a local quantity and has a �nite limit at T ! ∞, i.e., it
permits the limit of a constant electric �eld.

w c can be calculated with Sc in constant electric �eld at
T ! ∞.
w c is expressed in terms of the real-valued part of HEL (at
B = 0). This contribution is due to vacuum polarization. In a
superstrong electric �eld, d = 4, it has the form

w c = E
∂ ReLeff

∂E
� ReLeff � �

�
α

3π
ln
eE
m2

�
LM.

The contribution wp due to particle-creation, it is nonlocal
and is calculated via Sp(x , x 0).
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Back reaction due to vacuum instability

In a T -const. EF, quantum numbers of particles are n = (p, r),
r = (r1, . . . , r[d/2]�1), rj = �1.

Sp(x , x 0) = i ∑
n
�ψn(x)

�
G (+j�)G (�j�)�1

�†
nn +ψ̄n(x

0) .

f�ψn(x)g-in-solutions in T -const. EF, their asymptotics at t � t1
are free stationary states of Dirac Hamiltonian with A1 = ET/2.
G (�j�) (Bogolyubov coe¢ cients) are de�ned as

�ψ(x) =+ ψ(x)G
�
+j�

�
+� ψ(x)G

�
�j�

�
.

In particular, di¤. mean numbers of electrons created are
@n = jG (�j+)j2nn.
f�ψn(x)g-out-solutions in T -const. EF, their asymptotics at
t � t2 are free stationary states of Dirac Hamiltonian with
A1 = �ET/2.
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Back reaction due to vacuum instability

For calculating wp one needs Sp(x , x 0) at x � x 0, which is:

Sp = �i
Z
dp∑

r
@p,r

h
+ψp,r (x)

+ψ̄p,r (x
0)� �ψp,r (x)

�ψ̄p,r (x
0)
i
,

then we obtain

wp =
2

(2π)d�1

Z
dp∑

r
@p,r εp,r .

εp,r =
q
m2 + p2? + (eET/2� p1)2 are energies of out-particles in

a T -const. EF.
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Back reaction due to vacuum instability

In a T -const. EF, di¤erential mean numbers @p,r have the form

@p,r = exp
�
�π

m2 + p2?
eE

�
for jp1j �

p
eE
�p

eET/2�K
�
,

K a large arbitrary
p
eET � K � 1+m2/eE .

@p,r is fast-decreasing out of the interval T .
Calculating wp (total quantity), we obtain T -leading terms in the
T -dependent form

wp = eETncr , ncr =
N
V
= J

(eE )d/2 T

(2π)d�1
exp

�
�π

m2

eE

�
.

(Gavrilov, Gitman, Yokomizo (paper in preparation).
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EMT of created pairs

In a T -const. EF, at t > t2

h0, injT11j0, ini = h0, injT00j0, ini = eETncr ,

h0, injT22j0, ini = h0, injT33j0, ini = en ln�qjqE jT� .
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Back reaction due to vacuum instability

In a L-const. EF, di¤erential mean numbers @p,r have the same
form

@p,r = exp
�
�π

m2 + p2?
eE

�
for jp0j �

p
eE
�p

eEL/2�K
�
.

@p,r is fast-decreasing out of the interval L.
Thus, in the limit T , L! ∞, @p,r and ncr represents the
result for constant uniform �eld.
Calculating wp , we obtain L-leading terms in the the L- and
T -dependent form

wp = eELncr , ncr = J
(eE )d/2 T

(2π)d�1
exp

�
�π

m2

eE

�
.

wp are di¤erent functions of and for T -const. and L-const.
EF.
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Consistency restrictions on electric �eld and its duration

Particle-creation is the main reason for the change of matter
energy. The smallness of back-reaction in d = 3+ 1,
wp � E 2/8π, implies a restriction on dim.less parameter
(eEc/�h)T 2:

(ceE/�h)T 2 � π2

2α
exp

�
π
Ec

E

�
for T � const.EF

or on the electric �eld strength for a given time T ,

eE � π2�h
2αcT 2

exp
�

π
Ec

E

�
.

For L-const. EF

eE � π2�h
2αLT

exp
�

π
Ec

E

�
.
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Consistency restrictions on electric �eld and its duration

Graphene. Example of setting the problem.
The smallness of back-reaction in , wpV(2) � E 2

8πV(3),
V(3) = V(2)Lz implies

p
eE � π�hLz

8αLT
.
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Consistency restrictions at �nite temperature

If the initial state is in thermal equilibrium at high temperatures
θ � ecET , we have a weaker restriction for fermions:

eE � π

c

r
3�hθ

αT 3
exp

�
π

2
Ec

E

�
;

stronger restriction for bosons:

T ln
�p

ceE/�hT
�
� π2�h
2Jαθ

exp
�

π
Ec

E

�
.

J = 1 for scalar particles, J = 3 for vector particles
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Initial state as thermal equilibrium

at temperature θ

w = w c

(�T 0)

+ w cθ
(�T 1)

+ τpθ
(�T 2)

,

w cθ - from work of the �eld on particles from the many-particle
initial state,
τpθ = w

p + wpθ - energy density of pairs created from the
many-particle initial state,

wpθ = �
1
4π3

Z
D
dp ∑

r=�1
@p,rnp,r (in) εp,r ,

where np,r (in) = [exp (ε̃p,r/θ) + 1]�1 , ε̃p,r is the energy of a free
in-particle.
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Soft parton production by SU(3) chromoelectric �eld

ngluonp? � nquarkp? ,

then only the energy density of gluons created is important.
Total energy density of gluons created at low temperature,
θ � q

p
C1T ,

w ' wp . q
p
C1T@gluon , @gluon =

3Tq2C1
8π3

,

at high temperature, θ � q
p
C1T ,

w . 3θTq2C1
8π3

ln
�
q
p
C1T 2

�
.

C1 = E aE a is Casimir invariants for SU(3).
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1� q
p
C1T 2,

At low temperature, θ � q
p
C1T ,

q
p
C1T 2 �

π2

3q2
,

at high temperature, θ � q
p
C1T ,

θT ln
�
q
p
C1T 2

�
� π2

3q2
.
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Conclusion

The vacuum instability is essential for
E � Ec =

m2c3
e�h � 1, 3 � 1016V/cm.

For massless Dirac fermions in graphene Ecjm!0 ! 0

Mean energy of matter �eld has important nonlocal
contribution due to pair creation
Mean energy of matter �eld is calculated for T -const.
and L-const. EF in any dimensions
The back-reaction in 3+ 1- QED due to creation from
vacuum is small if

eE � π2�h
2αcT 2

exp
�

π
Ec

E

�
.

Consistency restrictions on electric �eld and its duration
for given model depend on space dimension and
temperature
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The end
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The p?-distribution densities of gluons n
gluon
p? and quarks nquarkp?

produced from vacuum:

ngluonp? =
1
4π3

3

∑
j=1
TqẼ(j)@̃

(j)
p ,

nquarkp? =
1
4π3

3

∑
j=1
TqE(j)@

(j)
p ,

@̃(j)p = exp

 
� πp2?
qẼ(j)

!
, @(j)p = exp

 
�π

M2 + p2?
qE(j)

!
,

where E(j) are the eigenvalues of the matrix iT
aE a for the

fundamental representation of SU(3); Ẽ(j) are the positive
eigenvalues of the matrix if abcE c for the adjoint representation of
SU(3); ���E(j)��� � pC1/3 and

���Ẽ(j)��� � pC1,
C1 = E aE a is Casimir invariants for SU(3). (Gavrilov, Gitman,
Tomazelli, NPB, 2008)
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Total energy density of gluons created from vacuum:

wp =
3

∑
j=1
wp(j), wp(j) =

1
4π3

Z
D(j)
dp@(j)p ε

(j)
p ,

from many-particle state at �nite temperature:

w = wp + wpθ , w
p
θ =

3

∑
j=1
w (j)θ ,

w (j)θ =
1
4π3

Z
D(j)
dp@(j)p n(j)p (in) ε

(j)
p ,

n(j)p (in) = [exp (ε̃p/θ)� 1]�1 .

(Gavrilov, Gitman, PRL, 2008)


	Introduction
	Some restrictions on external electromagnetic fields
	Calculations of back reaction
	Conclusion

