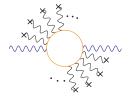
Optical Probes of the **Quantum** Vacuum:

The Photon Polarization Tensor in External Fields



Felix Karbstein

work in collaboration with B. Döbrich, H. Gies, N. Neitz

Helmholtz-Institut Jena & TPI FSU Jena

QFEXT11, Benasque, September 22, 2011

Contents

A. Introduction

A first look at the photon polarization tensor Photon propagation in the quantum vacuum Our agenda

B. The photon polarization tensor

The basic structure of the photon polarization tensor Available insights and limitations A special alignment Back to the general situation

C. An exemplary application

Beyond QED - Minicharges and Light-shining-through-walls The particular scenario, its treatment and results

D. Conclusions & Outlook

A. Introduction

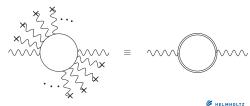
A first look at the photon polarization tensor

consider quantum electrodynamics (QED):

1-loop polarization tensor (in the absence of external fields)

$$\Pi^{\mu\nu}(k) = \cdots$$

▶ in the presence of an external field external field :→ 1-loop polarization tensor



 $\Pi^{\mu\nu}$ is the central input to an effective theory for photon propagation in the quantum vacuum

$$\mathcal{L}_{\rm eff}[A] = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \int_{x'} A_{\mu}(x) \prod^{\mu\nu}(x, x') A_{\nu}(x')$$

$$\uparrow$$

vacuum fluctuations

(here A_{μ} denotes a classical, macroscopic field)

without external fields: $\Pi^{\mu\nu}$ easily evaluated in momentum space \leftrightarrow in the presence of (constant) external fields: rather involved

- gives rise to modified speeds of light in external fields
- \blacktriangleright accounts for pair creation effects $~~\sim~~$ imaginary part

Our agenda

 $\Pi^{\mu\nu}$ for arbitrarily oriented, constant external e.m. fields is

- conveniently evaluated in momentum space,
- known in terms of a double integral expression

[I. A. Batalin & A.E.Shabad; Sov. Phys. JETP 33, 483 (1971)]
 [W. Dittrich & H. Gies; Springer Tracts Mod. Phys. 166, 1 (2000)]
 [C. Schubert; Nucl. Phys. B 585, 407-428 (2000)]

within the propertime formalism

[J. S. Schwinger; Phys. Rev. 82, 664 (1951)].

We aim at

- maximum, in particular non-perturbative insights,
- retaining the full momentum dependence.

This is

- important whenever transforming to position space,
- necessary when boundary conditions are set in position space.

B. The photon polarization tensor

The basic structure of the photon polarization tensor

constant magnetic field: metric $(-, +, +, +) \rightarrow k^2 = \mathbf{k}^2 - \omega^2$

[L. F. Urrutia; Phys. Rev. D 17, 1977 (1978)]

It is convenient to decompose the four-momentum k^{μ} in components \parallel and \perp to $\mathbf{B} = B\mathbf{e}_1$,

$$k^{\mu} = k^{\mu}_{\parallel} + k^{\mu}_{\perp} , \qquad k^{\mu}_{\parallel} = (k^{0}, k^{1}, 0, 0) , \qquad k^{\mu}_{\perp} = (0, 0, k^{2}, k^{3}) .$$
 (1)

Tensors can be decomposed analogously, $g^{\mu\nu} = g^{\mu\nu}_{\parallel} + g^{\mu\nu}_{\perp}.$ Then

$$\Pi^{\mu\nu}(k) = \frac{\alpha}{2\pi} \int_{0}^{\infty} \frac{\mathrm{d}s}{s} \int_{-1}^{+1} \frac{\mathrm{d}\nu}{2} \left\{ \mathrm{e}^{-\mathrm{i}\Phi_{0}s} \frac{z}{\sin(z)} \left[N_{0} \left(g^{\mu\nu}k^{2} - k^{\mu}k^{\nu} \right) + (\tilde{N}_{1} - N_{0}) \left(g^{\mu\nu}_{\parallel}k^{2}_{\parallel} - k^{\mu}_{\parallel}k^{\nu}_{\parallel} \right) \right. \\ \left. + \left(\tilde{N}_{2} - N_{0} \right) \left(g^{\mu\nu}_{\perp}k^{2}_{\perp} - k^{\mu}_{\perp}k^{\nu}_{\perp} \right) \right] + \mathrm{c.t.} \left. \right\}, \tag{2}$$

with z = eBs, and

$$\Phi_{0} = m^{2} - i\epsilon + \frac{1 - \nu^{2}}{4}k_{\parallel}^{2} + \frac{\cos\nu z - \cos z}{2z\sin z}k_{\perp}^{2}, \qquad (3)$$

$$N_{0} = \cos\nu z - \nu\sin\nu z \cot z,$$

$$\tilde{N}_{1} = (1 - \nu^{2})\cos z,$$

$$\tilde{N}_{2} = 2\frac{\cos\nu z - \cos z}{\sin^{2} z}. \qquad (4)$$

$$(4)$$
HEMMOLTZ
HASOCATION

constant magnetic field: [W. Dittrich & H. Gies; Springer Tracts Mod. Phys. 166, 1 (2000)]

With projectors onto photon modes polarized \parallel and \perp to the plane spanned by k and B,

$$P_{\parallel}^{\mu\nu} = g_{\parallel}^{\mu\nu} - \frac{k_{\parallel}^{\mu}k_{\parallel}^{\nu}}{k_{\parallel}^{2}}, \quad \text{and} \quad P_{\perp}^{\mu\nu} = g_{\perp}^{\mu\nu} - \frac{k_{\perp}^{\mu}k_{\perp}^{\nu}}{k_{\perp}^{2}}.$$
(5)

and a third projector,

$$P_0^{\mu\nu} = g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2} - P_{\parallel}^{\mu\nu} - P_{\perp}^{\mu\nu}, \qquad (6)$$

we obtain

$$\Pi^{\mu\nu}(k) = \Pi_0 P_0^{\mu\nu} + \Pi_{\parallel} P_{\parallel}^{\mu\nu} + \Pi_{\perp} P_{\perp}^{\mu\nu}, \qquad (7)$$

with

$$\begin{cases} \Pi_0 \\ \Pi_{\parallel} \\ \Pi_{\perp} \end{cases} = \frac{\alpha}{2\pi} \int_0^\infty \frac{\mathrm{d}s}{s} \int_{-1}^{+1} \frac{\mathrm{d}\nu}{2} \left[\mathrm{e}^{-\mathrm{i}\Phi_0 s} \frac{z}{\sin z} \left(\left\{ \begin{array}{c} N_0 \\ \tilde{N}_1 \\ N_0 \end{array} \right\} k_{\parallel}^2 + \left\{ \begin{array}{c} N_0 \\ N_0 \\ \tilde{N}_2 \end{array} \right\} k_{\perp}^2 \right) + \mathrm{c.t.} \right].$$
(8)

The three projectors span the transverse subspace.

Available insights and limitations

constant magnetic field:

▶ $\frac{eB}{m^2} \ll 1 \iff$ perturbative expansion in # of field insertions

 $\begin{array}{l} & \frac{eB}{m^2} \text{ arbitrary: limited insights} \\ & [W. y. Tsai \& T. Erber; Phys. Rev. D 10, 492 (1974) \& Phys. Rev. D 12, 1132 (1975)] \\ & \underline{but}: \text{ ``on-the-light-cone''} \leftrightarrow k^2 = 0, \text{ and for } \frac{k_{\perp}^2}{eB} \gg 1 \text{ only} \end{array}$

▶ $\frac{eB}{m^2} \gg 1$ & $k^2 > -4m^2 \leftrightarrow$ restriction to lowest Landau level, i.e., below pair-creation threshold

[A. E. Shabad; Annals Phys. 90, 166 (1975) & arXiv:hep-th/0307214]

Towards a special alignment

here we want to elaborate on the latter point:

- we aim at insights beyond the pair-creation threshold, and beyond "on-the-light-cone"
- \blacktriangleright we claim that the special alignment $\mathbf{k} \parallel \mathbf{B}$ is the simplest case,

$$\Phi_0 = m^2 + \frac{1 - \nu^2}{4} \left(\mathbf{k}_{\parallel}^2 - \omega^2 \right) + \frac{\cos \nu z - \cos z}{2z \sin z} \, \mathbf{k}_{\perp}^2$$

• in this limit, $\Pi^{\mu\nu}$ has the following structure:

$$\Pi^{\mu
u}(k) = \Pi_{\parallel}(k) P_{\parallel}^{\mu
u} + \Pi_{\pm}(k) \underbrace{(P_{+}^{\mu
u} + P_{-}^{\mu
u})}_{(\mu\nu)}$$

circular polarization (\pm)

with
$$\{P_{+}^{\mu
u}, P_{-}^{\mu
u}\} \equiv \{P_{0}^{\mu
u}, P_{\perp}^{\mu
u}\}$$

even though, the ||-component is of particular interest

A special alignment

consider $\mathbf{k} \parallel \mathbf{B} \iff \mathbf{k}_{\perp} = 0$:

[R. A. Cover & G. Kalman; Phys. Rev. Lett. 33, 1113 (1974)]
 [W. y. Tsai & T. Erber; Act. Phys. Austr. 45, 245 (1976)]

propertime integration can be performed explicitly:

$$\int_0^\infty ds \quad o \quad \lim_{ ilde{\epsilon} o 0} \int_{0-\mathrm{i}\widetilde{\epsilon}}^{\infty-\mathrm{i}\widetilde{\epsilon}} ds$$

and analytical continuation in eB, consistent with the electric-magnetic duality: $B \leftrightarrow iE$, and $k_{\parallel}^{\mu} \leftrightarrow k_{\perp}^{\mu}$

in the full momentum regime

► focus on the
$$\|$$
 - component: $\left(\Phi_0 = m^2 - i\epsilon + \frac{1-\nu^2}{4}k_{\|}^2\right)$
 $\Pi_{\|}(k) = k_{\|}^2 \frac{\alpha}{2\pi} \int_0^1 d\nu \left(1-\nu^2\right) \left[\ln\left(\frac{m^2}{2eB}\right) - \Psi\left(\frac{\Phi_0}{2eB}\right) - \frac{eB}{\Phi_0}\right]$

ASSOCIATION

A special alignment

the Digamma function has an exact series representation,

$$\Psi(\xi) = -\gamma - \frac{1}{\xi} + \sum_{n=1}^{\infty} \frac{\xi}{n(\xi+n)},$$

where γ denotes the Euler-Mascheroni constant

• therewith: $\left(\Phi_0 = m^2 - i\epsilon + \frac{1-\nu^2}{4}k_{\parallel}^2\right)$

$$\begin{split} \Pi_{\parallel}(k) &= k_{\parallel}^2 \frac{\alpha}{2\pi} \int_0^1 \mathrm{d}\nu \left(1 - \nu^2\right) \left[\frac{eB}{\Phi_0} - \sum_{n=1}^\infty \frac{\Phi_0}{n \left(\Phi_0 + 2eBn\right)} + \gamma\right] \\ &= k_{\parallel}^2 \frac{\alpha}{2\pi} \int_0^1 \mathrm{d}\nu \left(1 - \nu^2\right) \left[\sum_{n=0}^\infty \frac{c_n eB}{\Phi_0 + 2eBn} + \gamma - \sum_{n=1}^\infty \frac{1}{n}\right], \end{split}$$
with $c_0 = 1$, $c_{n \in \mathbb{N}} = 2$.

$$\xrightarrow{eB}{\Phi_0} \stackrel{\gg_1}{\longrightarrow} k_{\parallel}^2 \frac{\alpha eB}{2\pi} \int_0^1 \mathrm{d}\nu \, \frac{(1-\nu^2)}{\Phi_0}$$

HELMHOLTZ

We briefly outline an alternative way to obtain the result for Π_{\parallel} :

- via Landau levels
- in the absence of external fields:

In D = d + 1 space-time dimensions, this yields (not yet renormalized):

$$\Pi^{\mu\nu}(k) = \mathbf{i}(\mathbf{i}e)^{2} \operatorname{tr} \left\{ \int \frac{d^{D}p}{(2\pi)^{D}} \gamma^{\mu} \frac{\mathbf{i}}{\not\!p - m - \mathbf{i}\epsilon} \gamma^{\nu} \frac{\mathbf{i}}{\not\!p - k - m - \mathbf{i}\epsilon} \right\}$$
$$= \left(k^{2}g^{\mu\nu} - k^{\mu}k^{\nu}\right) \frac{\alpha D}{2} \frac{\Gamma\left(\frac{4-D}{2}\right)}{(4\pi)^{\frac{D-2}{2}}} \int_{0}^{1} d\nu \left(1 - \nu^{2}\right) \left[\frac{1}{m^{2} - \mathbf{i}\epsilon + k^{2}\frac{1-\nu^{2}}{4}}\right]^{\frac{4-D}{2}} . \quad (1)$$

A special alignment

turning on a magnetic field $\mathbf{k} \parallel \mathbf{B}$:

We rewrite

$$\int \frac{d^4p}{(2\pi)^4} = \int \frac{dp^0 dp_x}{(2\pi)^2} \int \frac{dp_y dp_z}{(2\pi)^2} = \int \frac{d^2p_{\parallel}}{(2\pi)^2} \int \frac{dp_{\perp}^2}{4\pi} \,. \tag{2}$$

In a magnetic field, we encounter Landau level quantization, implying

$$p_{\perp}^2 = 2eBn, \text{ with } n \in \mathbb{N}_0.$$
 (3)

Accordingly,

$$\int \frac{d^4 p}{(2\pi)^4} \quad \to \quad \frac{eB}{2\pi} \sum_{n=0}^{\infty} c_n \int \frac{d^2 p_{\parallel}}{(2\pi)^2} \,, \tag{4}$$

Focusing on the ||-component,

$$m^2 \rightarrow m_n^2 \equiv m^2 + 2eBn.$$
 (5)

The integral to be performed is in D = 2 dimensions.

\rightarrow after renormalization:

$$\Pi_{\parallel}(k) = k_{\parallel}^2 \frac{\alpha}{2\pi} \int_{0}^{1} d\nu \left(1 - \nu^2\right) \left[\ln \left(\frac{m^2}{2eB}\right) - \Psi \left(\frac{\Phi_0}{2eB}\right) - \frac{eB}{\Phi_0} \right].$$

now, we have:

- identified the correct propertime integration contour,
- ► non-perturbative insights in the full momentum regime by means of "large *z*" expansion $\leftrightarrow \frac{eB}{\Phi_0} \gg 1$

the result is:

only || - component does not vanish in this limit,

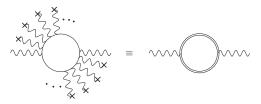
$$\begin{split} \Pi_0 &\approx 0, \qquad \Pi_\perp \approx 0, \\ \Pi_\parallel &\approx \ \mathrm{e}^{-\frac{\mathbf{k}_\perp^2}{2eB}} \ k_\parallel^2 \ \frac{\alpha eB}{2\pi} \int_0^1 \mathrm{d}\nu \ \frac{1-\nu^2}{m^2 - \mathrm{i}\epsilon + k_\parallel^2 \frac{1-\nu^2}{4}} \end{split}$$

allows for a Fourier transformation

C. An exemplary application

Beyond QED - Minicharges

- the photon polarization tensor accounts for the vacuum fluctuations of the underlying theory
- ▶ perhaps there are so far undetected particles (e.g., fermions) around - who knows? \leftrightarrow beyond QED / standard model \rightarrow Minicharges: tiny coupling ϵe , mass m_{ϵ}
- if they are there, they contribute to the polarization tensor

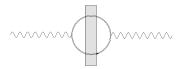


question: how can these effects be separated/ \rightarrow detected?

Light-shining-through-walls

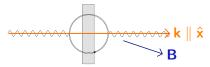
<u>answer</u>: by shining light through walls! \rightarrow there are experiments(!)

basic idea: "virtual tunneling" or "tunneling of the 3rd kind"



- problem formulated in position space
 - ightarrow the wall imposes a boundary condition
- without magnetic field [H. Gies & J. Jaeckel; JHEP 0908:063 (2009)]
- in the presence of an external magnetic field
 - \rightarrow need full momentum dependence
 - \rightarrow if m_ϵ is tiny as well, we are in the non-perturbative regime

Consider the following scenario:



theoretical treatment (very schematic):

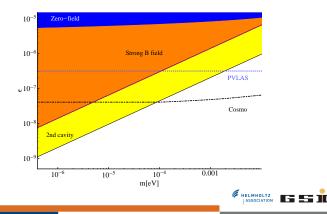
partial Fourier transformation

$$\bullet (\omega^2 + \partial_x^2) A_{\parallel}(x, \omega) = \underbrace{\int \mathrm{d}x' \Pi(x - x', \omega) A_{\parallel}(x', \omega)}_{=:j(x, \omega)}$$

- ▶ $j(x > 0, \omega) = \int_{-\infty}^{0} dx'' \Pi(x x'', \omega) a(\omega) \sin(\omega x'')$ with incident photon amplitude $a(\omega)$.
- ► transition probability: $P_{\gamma \to \gamma} = \lim_{x \to \infty} \left| \frac{A_{out}(x, \omega)}{a(\omega)} \right|^2$

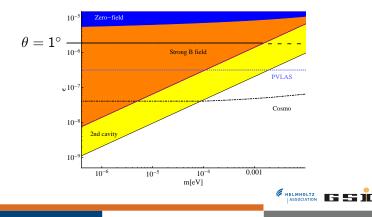
We find:
$$P_{\gamma \to \gamma}^{(strong)} \simeq \alpha^2 \frac{\epsilon^4}{36\pi^2} \left(\frac{\epsilon eB\cos^2\theta}{m^2}\right)^2 e^{-\frac{\omega^2 \tan^2\theta}{\epsilon eB}}$$
.

With parameters B = 5T, $\omega = 532$ nm, $n_{\rm in} = 10^{25}$, $\mathcal{N} = 10^5$, and using $n_{\rm out} = \mathcal{N} n_{\rm in} P_{\gamma \to \gamma}$, we obtain:



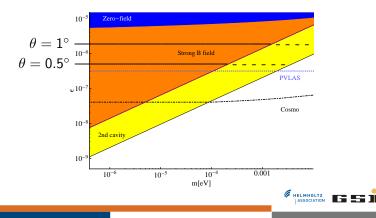
We find:
$$P_{\gamma \to \gamma}^{(strong)} \simeq \alpha^2 \frac{\epsilon^4}{36\pi^2} \left(\frac{\epsilon eB\cos^2\theta}{m^2}\right)^2 e^{-\frac{\omega^2 \tan^2\theta}{\epsilon eB}}$$

With parameters B = 5T, $\omega = 532$ nm, $n_{\rm in} = 10^{25}$, $\mathcal{N} = 10^5$, and using $n_{\rm out} = \mathcal{N} n_{\rm in} P_{\gamma \to \gamma}$, we obtain:



We find:
$$P_{\gamma \to \gamma}^{(strong)} \simeq \alpha^2 \frac{\epsilon^4}{36\pi^2} \left(\frac{\epsilon eB\cos^2\theta}{m^2}\right)^2 e^{-\frac{\omega^2 \tan^2\theta}{\epsilon eB}}$$

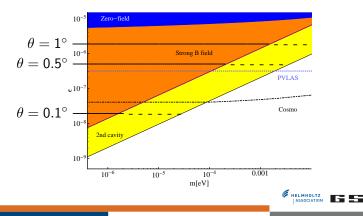
With parameters B = 5T, $\omega = 532$ nm, $n_{\rm in} = 10^{25}$, $\mathcal{N} = 10^5$, and using $n_{\rm out} = \mathcal{N} n_{\rm in} P_{\gamma \to \gamma}$, we obtain:



(de)

We find:
$$P_{\gamma \to \gamma}^{(strong)} \simeq \alpha^2 \frac{\epsilon^4}{36\pi^2} \left(\frac{\epsilon eB\cos^2\theta}{m^2}\right)^2 e^{-\frac{\omega^2 \tan^2\theta}{\epsilon eB}}$$

With parameters B = 5T, $\omega = 532$ nm, $n_{\rm in} = 10^{25}$, $\mathcal{N} = 10^5$, and using $n_{\rm out} = \mathcal{N} n_{\rm in} P_{\gamma \to \gamma}$, we obtain:



(de)

D. Conclusions & Outlook

Conclusions & Outlook

The photon polarization tensor is the central quantity, when aiming at investigating & understanding vacuum polarization effects in intense fields.

We have obtained:

- non-perturbative insights,
- retaining the full momentum dependence,
- ▶ i.e., in particular beyond the pair-creation threshold,

in case of a constant external magnetic field.

This is

- important whenever transforming to position space,
- necessary when boundary conditions are set in position space.
- It hopefully will be published soon.

The End ...

Thank you for your attention!

