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I Casimir effect, in most general terms, is the backreaction
of a quantum system responding to an adiabatic change
of external conditions. This backreaction is expected to be
quantitatively measured by a change in the expectation
value of a certain energy observable of the system.

I However, for this concept to be applicable, the system
has to retain its identity in the process. Most prevailing
tendencies in the analysis of the effect seem to overlook
this question.
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I In general, a quantum theory is defined by an algebra of
observables, whose representations by operators in a
Hilbert space define concrete physical systems described
by the theory. A quantum system retains its identity if both
the algebra as well as its representation do not change.

I I shall discuss the resulting restrictions for admissible
models of changing external conditions. These ideas are
applied to quantum field models. No infinities arise, if the
algebraic demands are respected.
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SYSTEM Q-M 1. QUANT SYS UNDER EXT CONDS

I Q – relatively simple quantum system (e.g. a quantum
field)

I M – complex macroscopic system (say, conducting plates)
with collective effective coordinates a

I Full closed theory of Q-M out of reach
I Approximation:

M is ‘heavy’ – characterized by very large inertia; thus:
I variables a are classical
I changes of a are adiabatic
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Isolated system Q (HP) 1. QUANT SYS UNDER EXT CONDS

I Basic quantum variables at a fixed time form an abstract
algebra A, e.g. CCR algebra.

I Algebra is represented by operators in a Hilbert space H:

π : A 7→ π(A) , A 7→ π(A);

Density operators in H represent states of the system Q.
I Intrinsic dynamics of Q defined by an automorphism of A:

αt : A 7→ A , A 7→ αtA

implemented by a unitary evolution in the Hilbert space H:

π(αtA) = U(t)π(A)U(t)∗ , U(t) = exp(itH) ,

where H – the energy operator of the system, with
nonnegative spectrum and a ground state, represented by
a unit eigenvector; energy may be normalized to be zero in
that state.
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Introducing M 1. QUANT SYS UNDER EXT CONDS

I Add part M into the system: characterized by classical
variables a; no quantum degrees added.

I System Q should retain its identity:
algebra A must remain unaffected.

I States to be considered must be physically comparable:
the representation π of A must remain unaffected.



Dynamics of Q with frozen M 1. QUANT SYS UNDER EXT CONDS

I Degrees a frozen – system Q still a closed system in
interaction with conditions created by M;
for each a evolution: an automorphism of A:

αat : A 7→ A , A 7→ αatA .

I Evolution implemented in representation π: for each a

π(αatA) = Ua(t)π(A)Ua(t)∗ , Ua(t) = exp(itHa) .

I For each a the generator Ha defined by this up to:

Ha → Ha + λa id ,

where λa is any real function of parameters a.
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Coupled system Q-M (SP) 1. QUANT SYS UNDER EXT CONDS

I Unitary evolution of Q in SP (Q not closed – evolution on
algebraic level: to restrictive).

I Suppose that a(t) is known as a ‘slow’ function of time
(system M is ‘heavy’). Adiabatic approximation with initial
(t = 0) eigenstate of Ha(0):

ψ(t) = eiϕ(t)ψa(t) ,

where Haψa = Eaψa and ϕ(t) is a real function depending
functionally on Ea and ψa.

I Evolution of expectation value of an observable B given by

〈B〉t = (ψa(t),B ψa(t)) ,
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Backreaction – determination of a(t) 1. QUANT SYS UNDER EXT CONDS

I Intrinsic energy stored in part Q of the system represented
by H, which in the coupled system is not a constant of
motion any more; its expectation value

Ea := (ψa,H ψa) ,

depends on time through variables a.
I Changes in Ea correspond to the energy which has been

transferred from Q to the rest of the system, which (with the
suppression of all microscopic details of M) is described by
the variables a. Thus Ea plays the role of a potential energy
with respect to these variables. We assume that the rest of
the total energy of the coupled system is supplied by the
kinetic energy of M, thus we obtain a potential system, with
the generalized force given by

Fa = −∂Ea

∂a
.
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Classical system 2. CLASS OF QUASI-FREE SYSTEMS

I Symplectic space (phase space):
L ⊂ R⊕R 3 V ≡ (v ⊕ u), R – real Hilbert space
symplectic form

σ(V1,V2) = (v2,u1)− (v1,u2)

I Hamiltonian function

H(v ,u) = 1
2 [(u,u) + (hv ,hv)] ,

h – positive selfadjoint operator on R,
I Symplectic evolution

Tt (v⊕u) =
(

cos(ht)v+sin(ht)h−1u
)
⊕
(
−sin(ht)hv+cos(ht)u

)
.

I Denote
V ′(V ) = (v ′,u) + (u′, v) ,

then
(TtV ′)(V ) = V ′(TtV ) .
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Quantum system 2. CLASS OF QUASI-FREE SYSTEMS

I ‘Quantization’: V ′(V )→ Φ(V ) – algebraic elements
satisfying CCR

[Φ(V1),Φ(V2)] = iσ(V1,V2) id , V ∈ L

evolution
αt (Φ(V )) = Φ(TtV )

I Vacuum representation Φ(V )→ Φ0(V ) – operators in
a Fock space; rep. defined by demands:

Φ0(TtV ) = U(t)Φ0(V )U∗(t) , U(t) = exp(itH) .

H – positive, with ground state vector Ω
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Examples 2. CLASS OF QUASI-FREE SYSTEMS

I Free massless scalar field – initial value formulation:

R = L2
R(R3) , h =

√
−∆ , L = DR(R3)⊕DR(R3)

I Scalar field with boundary conditions on surfaces
coordinated by parameters a:

R = L2
R(R3) , [hB

a ]2 = −∆b.c. , LB
a = DR(hB

a )⊕DR([hB
a ]−1/2)

I ‘Momentum’-regularized boundary conditions:
ha = f (h,hB

a ), such that ha ' hB
a for small momentum

transfer, and ha ' h for large momentum transfer
I Scalar field with external static interaction depending on

parameters a: h2
a = −∆ + Va, Va – perturbation
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Examples – quantization 2. CLASS OF QUASI-FREE SYSTEMS

I Algebra CCR

[Φ(V1),Φ(V2)] = iσ(V1,V2) id , V ∈ La

evolution
αat (Φ(V )) = Φ(TatV )

where Tat is defined by ha

I Ground state representation Φ(V )→ Φa(V ) – operators in
a Fock space; rep. defined by demands:

Φa(TtV ) = Ua(t)Φa(V )U∗a(t) , Ua(t) = exp(itHa) .

Ha – positive, with ground state vector Ωa
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Conditions 3. ADMISSIBILITY OF MODELS

I Stability of algebras: L = La
Not satisfied in the sharp boundary conditions case!
(and no way to satisfy the condition by any extension
of symplectic spaces)

I Relation between representations: when stability of
algebras is ensured then annihilation/creation operators of
representations determined by h and ha are related by
a Bogoljubov transformation

aa(f ) = a(Taf ) + a∗(Saf ) , a∗a(f ) = a∗(Taf ) + a(Saf )

with Ta linear and Sa antilinear, determined by h and ha.
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Conditions 3. ADMISSIBILITY OF MODELS

I Representations are equivalent iff

Na ≡ Tr[SaS∗a] = 1
4 Tr[h−1/2(ha − h)h−1

a (ha − h)h−1/2] <∞

Then Na = (Ωa,NΩa), N – particle (or ‘excitation’) number
I Casimir energy for ground state

Ea = (Ωa,HΩa) = 1
4 Tr[(ha − h)h−1

a (ha − h)]

If this happened to be infinite, this would have a perfectly
legitimate physical meaning: creation of Ωa, although
theoretically possible, needs infinite amount of energy.
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Planar symmetry 4. TWO MODELS FOR PARALLEL PLANES

I R = L2
R(R2)⊗ L2

R(R),

h2 = (h⊥ ⊗ id)2 + (id⊗hz)2 , h2
a = (h⊥ ⊗ id)2 + (id⊗hza)2

h2
⊥ = −∆⊥ , h2

z = −∂2
z

I hza will model parallel planes at a distance a
I Na and Ea must be normalized to quantities per unit area of

planes, na and εa resp.
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Two models 4. TWO MODELS FOR PARALLEL PLANES

I 1. Transparency to large momenta:

hza = hz + G(hz)
[
F (hB

za)− F (hz)
]
G(hz) ,

hB
za – sharp Dirichlet or Neumann bound. cond. at points

separated by a,
F ,G(p)→ 0 (p →∞), F (p) = p, G(p) = 1 (p ≤ p0)

I 2. Nonlocality control:

hza = hz+Va , Va(z, z ′) = g(z−b)g(z ′ − b)+g(z+b)g(z ′ + b)

g of compact support, even (D) or odd (N) (b = a/2)
I Both classes of models meet the admissibility criteria, so

the Casimir energy per area εa is well defined and finite
for all a
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Approximating boundary conditions 5. SCALING

I For each model – a one parameter (λ ∈ (0,1〉) family of
rescaled models, such that for fixed a and λ→ 0 the sharp
boundary conditions are recovered

I The Casimir energy per area scales:

εa,λ = λ−3εa/λ

Thus to find scaling behavior of εa,λ for scaled models:
expand εa in powers of 1/a up to third order
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Expanding εa 5. SCALING

I Casimir energy εa given by a complex integral expression
depending functionally on functions defining the models
and on a

I Expansion

εa = ε∞ +
γ

a2 −
π2

1440a3 + higher terms

ε∞ energy needed to produce field configuration around
two independent plates
γ = 0 for Dirichlet case, and

model dependent for Neumann case
– contribution from inside the walls

a−3-term – universal for large class of models
I Models for conducting plates and electromagnetic field –

sum of the D and N terms
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Summary and outlook

I Proper formulation of the problem removes the usual
sources of infinities

I Casimir energy defined as expectation value of one and
the same observable for all modifications of external
conditions in question

I Models considered very simplified, but showing the
strength of the formulation

I Large area for further research: more refined models of
external bodies, thermal states, different geometries,...
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