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massless scalar field ¢ in D = d + 1 dimensions defined on domain D with
background potential o has the canonical EMT

Tow(x,t) = lim [aﬂ¢a;¢' — %gw (CRLAY —a(x)cbd)’)]

x—x’

<7A'W(x, t)> is part of the source term in the semi-classical Einstein equations

Ry — %gu,,R =K <éu,,(x, t)> =K <?-;w + A'?'W>

Negative energy densities are undesirable !

classically: use energy conditions to avoid negative energy densities




momentum tensors of quantum fields

Energy-

massless scalar field ¢ in D = d + 1 dimensions defined on domain D with
background potential o has the canonical EMT

Tw(x,t) = XIi_)nl,

[aﬂ¢a;¢' - %gw (0,000 — a(x)cbcb’)]

<?'W(x, t)> is part of the source term in the semi-classical Einstein equations

Ry — %gu,,R =K <éu,,(x, t)> =K <?-;w + A'?'W>

Negative energy densities are undesirable !

classically: use energy conditions to avoid negative energy densities
but: QFT can violate (some) energy conditions * 2 3
So far ANEC is obeyed !
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Introduction

Energy conditions

Averaged Null Energy Condition: [ <?,W "z VV> dr >0

d g
expand ®(x, t): ®(x,t) = [ (‘;—ﬂ‘)’—d \/;_Ep (Yp(x)eEeta, + h.c.)

= (—V2 —p*+ U(X)> Pp(x) =0 G(x,x', k) = / ((;Wl))d fzp(_ )kd;pf ,'i

@ choose z-direction: V* =(1,0,...,0,1)
@ let o impose Dirichlet BC on 0D

(Fool®, 8)) = lim /% <k2 v (Vo 6’)) Im [(G — Go)(%, %, k)]

X5/ 2
2 dk le f= =
<Tzz(zv t)> = lim /_ <azaz’ -=V. (v = v/)) Im [(G _ GO)()_(:)_(Iv k)]
X% ) T 2
o use worldline formalism for evaluation of (G — Gp)(X, X', k)




Introduction
worldline formalism

What is the worldline formalism?

Feynman 1950 - alternative description of Klein-Gordon field

idea: map QFT amplitudes on quantum mechanical path integrals over paths
of quantum fluctuations

— this is particularly suitable for the treatment of the influence of external
conditions® ©

What is the advantage of the worldline formalism?
@ works for arbitrary background potentials

@ spacetime remains continuous
8

@ numerics only needed for renormalized quantities’
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Introduction
worldline formalism

o 1-loop effective actions, e.g. for Klein-Gordon field (Euclidean spacetime)

OO T 2 T
— [dr¥4 — [dro(y)
Mulel = | == e /dxcm?{Dy T)e © “le o Y
o Green's functions of fields, e.g. for Helmholtz equation
tfd‘r ——V(y))

G(x,x', k) —//dse’Sk /Dy T)e ®

@ approximate integrals with sums:
infinitely many paths — finite ensemble of loops/lines

@ discretize paths:
infinitely many points on path — finitely many points per loop/line (ppl)

Q rescaling y — /Ty makes weight factor independent of T (unit loops)




worldline formalism for the energy-momentum tensor
Previous results

The Casimir effect on the worldline

@ numerical calculations for a massless Klein-Gordon-field

o T
o] 1 / aT / by —laro(y)
£ imir — = d 'm 0 — 1),
e Jax® " oam ) T s P

o for Dirichlet BCs®? 1% o = X - §(Xpiaze) With A — 00
T
— [dro(y) -1 intersects all boundaries o
e 1V g Y --e(T-7)

0 else

@ curvature and edge effects can be easily investigated

o examples: (semi-)infinite plate(s), cylinder/sphere above plate, perpendicular
plates (Casimir comb), ...

o
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worldline formalism for the energy-momentum tensor
The Green's function in worldline representation

Green's function for Helmholtz equation

G(x,x',k):/ i Q/JP(X)w;(XT)

(27T)d 2 _ k2

i[dr L—a'
= /ds ek’ /Dy T)e Of )




energy densities for plate configurations
energy density for a single plate

@ plate at origin of z-axis, measure distances in dimensionless variable ¢
@ y_ is point of loop closest to the plate

o VTy +(<0 = e(T—?):@(T—S;)

—




energy densities for plate configurations
energy density for a single plate

energy density for a single plateind =2 at ( =0
A |y_
<T00> (47‘(’ (ac)s’ ( |.y— >>
(_ﬁ VT

7)

L A N < A -
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energy densities for plate configurations
energy density for a single plate

energy density for a single plateind =3 at (=0
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energy densities for plate configurations
energy density for a single plate

(Too)

0.0 .
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<T00>d_2 — T 327 (al)? <T00>d_3 = T 1672 (aC)*



energy densities for plate configurations

energy density for a single plate

conclusions
@ negative energy density, divergent as ( — 0
o (ly_|P) — I [2£3] (compatible with results for Casimir effect!!)
@ null energy condition:

A s 1 1 _|hY d _
<Too+ Tzz> = (471_)# (aC)d+1 <<|};/—|i-1 i - §<|}’—|d 1>)

o NEC violated: <7A'00 + 7A'zz> < 0 everywhere, also diverges as ( — 0

@ but: ANEC might still be obeyed,
contribution of the plate — +00 as 0 — o0
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energy densities for plate configurations
energy density for the Casimir plates
o plates at z= +2

. _ 1
5. e atC—:l:E

@ y_ and y; are points of loop closest to the plates

o VTyr +(CFL) <0 = @<T_?) :e<T_min [(4; )2D

N1

N =




energy densities for plate configurations
energy density for the Casimir plates

evaluate Too(l) in d =2 and d =3

(7o) 0= e [ Gra e (o(T-7))
0
1
a3

(o), 0= - 53-8 (2603~ au (3.3 : +¢)-an(33-¢))

(Tan),, 0= - s (2@ =au (85 +¢) ~an (45 -¢))

o divergent as ( — &1 (canonical EMT !)

e adding Huggins-term AT, renders EMT finite and constant!? 3
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energy densities for plate configurations

energy density for the Casimir plates
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@ our algorithms work

o for ANEC choose setup where geodesic does not pass through boundary




ANEC for configurations with holes
ANEC for punctured plate in d=2

@ two-part boundary at z=0 in x-direction (0D = x € (—o0, —a) U (a,x0))

@ preliminary algorithm: loop always intersects closest point first
@ distance to closest point: p = +/¢2+1

o VTy, +p=0 = e(r-?):e(r_ﬁ)

Yp




ANEC for configurations with holes
ANEC for punctured plate in d=2
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ANEC for configurations with holes
ANEC for plates with a slit in d=3

@ two-part boundary at z=0 in x-y-plane

(0D = (x,y) € (=00, —a) U (a,00) x (=00, 0))
@ preliminary algorithm: loop always intersects closest point first
o distance to closest point: p = 4/¢2+1

o VTy, +p=0 = e(r-?):e(r_ﬁ—z>

i




ANEC for configurations with holes
ANEC for plates with a slit in d=3
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Summary/Conclusions

@ worldline formalism generalized to composite operators, e.g. EMT
@ systematic exploration of geometry dependence of EMT components

@ investigation of energy conditions in different setups

future projects
@ improve/extend results for ANEC for punctured plate
@ ANEC for 2 punctured Casimir plates

@ What happens to ANEC when plates are thick? What happens when edges
are rounded? ...




Summary/Conclusions

Thank you for your attention!
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