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Casimir, 1948: 

Lamb shift in hydrogen: 

Attractive force between neutral perfect mirrors: 

Schwinger, 1948: 

Magnetic moment of the electron: 

µ =
e!
2m

(
1 +

e2

8π2ε0!c
+ . . .

)

Bethe, 1947: 
δE2s − δE2p = 2π!× 1040 MHz

f = − !cπ2

240a4
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Canonical formulation of Maxwell’s equations: 

Canonically quantize to obtain field operators: 

Canonical fields: scalar and vector potentials: 

Canoncial momenta: 

Action: 
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Another version of classical electromagnetism –  
macroscopic Maxwell equations for light in macroscopic media –  
media described by dielectric functions (permittivities and permeabilities): 
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Macroscopic QED?  
[Obvious way to generalize Casimir’s result to realistic materials] 
Find Lagrangian and Hamiltonian for macroscopic electromagnetism – canonically quantize. 

Canonical quantization “widely agreed” to be impossible [Huttner and Barnett, PRA, 46 (1992) 4306]. 
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, and for κ(r, ω)Kramers-Kronig relation: 

Problem is dispersion and absorption (Kramers-Kronig). 

This is arguably the most experimentally significant field theory in physics. 



In the purely phenomenological approach, no rigorous quantization attempted.  
Some reasonable quantum prescriptions are imposed, which can be justified in the case of the 
simple microscopic models.  
Again, many papers over the decades.  
[Sometimes called “macroscopic QED”] 

The lack of a canonical formulation of the macroscopic Maxwell equations led to two 
approaches to quantization. 

Microscopic models 

Phenomenological approaches  

Introduce a simple microscopic model of a medium – typically a field of harmonic 
oscillators with some resonant frequency. 
Absorption is dealt with using a reservoir (heat bath) which is a continuum of harmonic 
oscillators at all frequencies. 
Microscopic matter degrees of freedom are specified; system can be canonically quantized; 
afterwards, an effective permittivity is extracted. 
Many examples in the literature. 



Canonical quantization of macroscopic electromagnetism is possible  
[TP, New J. Phys. 12 (2010) 123008]. 

Action depends on fields and their first derivatives: canonical quantization can proceed   
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Action for macroscopic electromagnetism includes reservoir fields, because of dissipation: 

Field equations of this action are the macroscopic Maxwell equations: 

Electromagnetic fields: 

Reservoir fields: 

Coupling terms: 

Coupling functions: 
No microscopic substructure underlying dielectric functions is assumed; valid for arbitrary 
linear inhomogeneous magneto-dielectrics.  



Field equations of the action are 

Standard canonical quantization proceeds without difficulty. 
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Solve the reservoir equations, with the retarded solution, and use the Kramers-Kronig 
relation 
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the equations for the electromagnetic fields are the macroscopic Maxwell equations 



Electric field operator is 

Diagonalizing operators of the Hamiltonian are bosonic creation and annihilation operators:  

Green bi-tensor is the solution of 

Free current operator is 
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Standard theory - Lifshitz theory -  was not based on the principles of QED, rather on those 
of thermodynamics (fluctuation-dissipation theorem).  

  Casimir effect is caused by quantum electromagnetism in macroscopic media. 
  Casimir effect is broadband so dispersion and dissipation cannot be ignored        
   (arbitrary ε and µ, obeying Kramers-Kronig relations). 

Lifshitz theory has no Hamiltonian, there are no quantized fields –  yet it is used to 
calculate forces caused by quantum fields (zero-point and thermal).  
This is the cause of long-standing doubts about the status of Lifshitz theory as a quantum 
theory. 

Macroscopic QED is the obvious basis for the general theory of the Casimir effect: 



Energy density and stress tensor of macroscopic QED are given by Noether’s theorem 
(because we have a Lagrangian): 

Canonical macroscopic QED, restricted to thermal equilibrium, provides a rigorous quantum 
foundation for Casimir effect. [TP, New J. Phys. 13 (2011) 063026] 
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Only a simple restriction to thermal equilibrium is required; place the bosonic eigenmodes 
in a mixed thermal state: 
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Ŷω · B̂ + B̂ · Ŷω

)]

σ̂ij =
1
2
δij(ε0Ê
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Casimir (i.e. zero-point and thermal) energy density and stress tensor are the electromagnetic 
part of stress-energy in thermal state. 



Electromagnetic energy density of zero-point and thermal fields inside medium: 

Correlation function <EE>  
in frequency domain 

Correlation function <BB>  
in frequency domain 

Electromagnetic stress tensor of zero-point and thermal fields inside medium: 

Conflicting assertions about Casimir energy density inside media have been made – 
correct form emerges automatically from canonical macroscopic QED. 
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This is the Lifshitz theory result. [Dzyaloshinskii, Lifshitz & Pitaevskii Adv. Phys. 10 (1961) 165] 



Canonical macroscopic QED can be extended to magnetoelectric coupling  
[S. Horsley, arXiv:1106.2178]. 
Again, there are automatic restrictions, on the size of the magnetoelectric susceptibility: 

For anisotropic media the permittivity and permeability tensors are necessarily 
symmetric in the canonical formulation, and hence in macroscopic QED: 

The restriction to symmetric dielectric functions is usually derived from thermodynamics. 
Here it is seen to be a requirement for a canonical formulation and hence for a quantum 
theory. 

In the special case of chiral media, this restriction has been derived from thermodynamics. 
Here, a more general restriction is an automatic requirement for a canonical formulation and 
hence for a quantum theory.  
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•  There is no need for phenomenological approaches to quantizing the macroscopic 
Maxwell equations. 

•  Macroscopic electromagnetism has been canonically quantized.  

•  Macroscopic QED provides a rigorous quantum theory of light in general dispersive, 
absorptive media, including the Casimir effect. 

•  Macroscopic QED can be generalized to include magneto-electric coupling and spatial 
dispersion. 

•  Macroscopic QED, in requiring a canonical formulation of the classical theory, gives 
restrictions on allowable constitutive relations, some (but not all) of which have 
previously been understood only from thermodynamic considerations. 


