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Outline of Talk

Introduction
@ Motivation for studying radiation damping,

@ Governing equations.

Radiation damping

@ Overview of radiation damping effects,

@ Radiation damping induced electron capture,
@ Mass shift,
°

Plane wave limit.

Nonlinear Compton Scattering
@ Mass shift.

Conclusion
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Introduction
Laser intensities increasing — new physics.

Focused Intensity (Wem?)
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[Adapted from Tajima and Mourou (2002)]
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Introduction

Laser intensities increasing — new physics.
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Radiation Damping

Schwinger Field
Vacuum pair prod

Quantum Effects

Vacuum birefringence....
Nonlinear Compton

Radiation Reaction
F= FLorontz + FRcaction )

Lorentz Force
FLorcntz — e(E + v X B)

y
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Euler-Heisenberg Effective Action

= —/ dTe_’"2T/d4x/Dx ek,
0 T

Worldline instanton — semiclassical — use classical paths.
Dunne and Schubert (2005)
Dunne, Wang, Gies, Schubert (2006)

5[ ]—_/ dr ( + eA, x >
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This Talk J

Classical solutions with radiation reaction

Tom Heinzl, Anton llderton, Felix Karbstein
Tree level, Loops J
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Laser Intensity Parameter — ag.

Laser beam characterised by the ‘dimensionless laser amplitude’

eE)\[_
a() — 72
mc

@ Ratio of the energy gain of the electron moving over a laser
wavelength with the electron’s rest mass.

o Classical quantity.

(Lorentz and gauge invariance [Heinzl and llderton,2009].)

With lasers can study phenomenology of high intensity ag > 1 and low
energy w < mc? regime.
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Classical Radiation Damping

Strong acceleration: electron’s radiation will affect its motion.

@ Simulate interaction
of electron with
realistic pulsed
Gaussian beam.

@ Assess the
importance of
radiation damping.

X (m)

@ Look for regimes
where radiation
damping prominent:
test theory. z(m) X 10°
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Governing Equations

Lorentz Abraham Dirac Problem

mit = eFH u,, — %f—w(u“u" — u”i*) | Runaway solutions: unphysical
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Governing Equations

Lorentz Abraham Dirac Problem
mut = eF* u, — %%(u“&” = u”U“)J Runaway solutions: unphysical J

Well established solution: approximate i terms using Lorentz force

Landau Lifshitz equation

e 2e? e ; e? e?
ut = ;F!LVUV aF gﬂ {rnzF'uVUV aF ﬁF#aFaVUV — ﬁUaFaVFVBUﬁ U'u}

Perturbative expansion of LAD

@ No runaway solutions.
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Parameter Constraints

Two constraints on parameter values:

@ Validity of Landau Lifshitz equation: radiation damping term smaller
than Lorentz force term

aw3072 < mc?.

o Classical regime: work done by laser field over a Compton wavelength

ehr/(FH u,)?
X;#« 1, =  hayyw < mc.
m2c

(Quantum effects dominate when x ~ 1.)
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Electron Dynamics in Optical Fields
C. Harvey and M. Marklund (to appear)

a0 = 150, vo = 100. a0 = 250, v = 150.
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Electron Beam Size Effects

Radiation damping induced capture stable with respect to size of electron
beam. ap = 250, 7o = 100.

5

x 10"

X (m)

X (m)
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Radiation Damping Effects

C. Harvey and M. Marklund (to appear)

Find that radiation damping causes:
@ net energy loss.
o deflection/reflection of the electron.

(Significant change to trajectory and therefore to emission spectra.)

Introduce displacement measure D:

e longitudinal displacement of electron (compared to where it would be
if no field present).

Fix ag and consider displacement as a function of ~q.
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Radiation Damping Induced Electron Capture
C. Harvey and M. Marklund (to appear)

ao = 250 Regime 279 > ag, ap > 1:
o damped electron displaced,
: undamped electron not
displaced

@ radiation damping
induced electron capture.

Displacement (m)
o

Condition 29 > ag: onset of
reflection for head on collisions
with plane waves.

‘_Wi‘moum? ‘ ‘ N ‘ ‘ Di Piazza, Hatsagortsyan, Keital

20 40 60 80 100 120 140 160 180

% (2009).
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Intensity Dependent Mass Shift
Electron in a plane wave exhibits a 'quiver’ motion.

@ Typically too small to be resolved by
laser field.

@ Proper time average:
quasi momentum q.

@ Square g to obtain mass shift

m? — m? = ¢> = m*(1 + a3).

Condition 27y = ag defines centre-of-mass frame.
Harvey, Heinzl, llderton (2009).
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Plane Wave Approximation

o Compare
Gaussian beam
results with plane
wave
approximation.

@ When 27 > ag
plane wave gives
accurate
estimation of net
energy change.

In the plane wave approximation strong field QED calculations possible.
@ Solution to Dirac equation Volkov (1935)
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Intensity Dependent Mass Shift (Again!)

The mass shift also occurs in the QED calculation:

@ Apply kinetic momentum operator p — eA = /0 — eA to Volkov
solution,

o Take time average: quasi momentum g,

o Effective electron mass: m?> — m? = ¢ = m?(1 + a3),
Sengupta (1952), Brown and Kibble (1964)
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Intensity Dependent Mass Shift (Again!)

The mass shift also occurs in the QED calculation:
@ Apply kinetic momentum operator p — eA = /0 — eA to Volkov
solution,
o Take time average: quasi momentum g,

o Effective electron mass: m?> — m? = ¢ = m?(1 + a3),
Sengupta (1952), Brown and Kibble (1964)

This is exactly the same mass shift as we had in the classical theory!

The condition 2y9 = ag defines the centre-of-mass frame.
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Example: Nonlinear Compton Scattering
C. Harvey, T. Heinzl and A. llderton PRA 79 063407 (2009)
Most important process that can be observed with current intensities.

@ Electrons in collision with IVV\/\ A

high intensity laser, [\/VV\ —) — o
o

@ Electron absorbs n laser :

photons ~; of momentum ¥
k, 9(‘@
-®

@ Emits one photon yof  "77777
momentum k’,

qu + nk, — q;L + k//u
centre-of-mass

q+nk=0 = ap = 2.
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Spectral Flow (79 = 100 = ag.com = 200)
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Emission harmonics collapse to line spectra in the centre-of-mass frame.
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Summary

New generation of high intensity lasers: new physics.

Classical domain: RR effects will become important:

@ Radiation reaction induced electron capture,
Stable with respect to electron beam width,
Occurs when 27 > ag,

Plane wave approximation good,

— mass shift important.

Beyond classical: nonlinear Compton scattering

@ Mass shift important.
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Summary/Outlook

Current facilities

Classical (LF) approximation good J
New facilities

Classical radiation reaction and QED effects J

Questions to address:
@ When does the classical theory break down?
@ When do quantum effects become important?

@ Better understanding of the mass shift.
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Appendix: The Mass Shift

Am? /m?
l_
028+
Finite pulse duration effects.
06+
Mass shift Am = m? — m?.
044
Number of cycles .
024
ag = 1
0 T T
0 1 2 3 4 5
N
T. Heinzl
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