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Planar Systems in Physics

Many condensate matter systems can be approximated as
two-dimensional, like metal and conducting organic (polyacetylene)
films, graphene and high-T superconductors
( La(2-x)Sr(x)CuO2, YBCO, BSCCO ):
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It is possible to describe these planar systems in condensed-matter
physics through quantum field theory models and techniques for
fermions in 2 + 1 dimensions [Nambu-Jona-Lasinio (NJL) or
Gross-Neveu (GN) type of models are simple examples]
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Describing interacting two-dimensional fermionic systems
in quantum field theory

L[Ψ̄ ,Ψ ] =
∑
s=↑,↓

Ψ̄s(i}∂t − i}vF~γ · ~∇)Ψs +
∑
s=↑,↓

λ

2N
}vF (Ψ̄sΨs)2

Properties:

describes self-interacting fermions with N flavors

It is asymptotically free

Exactly soluble model (mean-field)

In 2+1d it is renormalizable in the 1/N expansion

Mass terms (which violate chiral symmetry explicitly) can be
included as well without loss of solvability (at large N)

guide to thermodynamics of chiral symmetry restoration in QCD1

1Kneur, Pinto and ROR, PRD74, 1252020 (2006), Kneur, Pinto, ROR, Staudt,
PRD76, 045020 (2007), Kneur, Pinto and ROR, PRC81, 065205 (2010)
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It can have either discrete or a continuous chiral symmetry

At finite T only version of the model (in 2+1d, massless) with
discrete chiral symmetry undergoes PT (no continuous PT in 2
space dim)

Both chiral and superconducting gaps can be implemented

Useful model to describe low energy (condensed matter) systems
as well2 (continuum version of the Su-Shrieffer-Heeger model for
polyacetylene in 1d)

2Caldas, Kneur, Pinto and ROR, PRB77, 205109 (2008), Caldas and ROR,
PRB80, 115428 (2009)
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Applying an external magnetic field ~B

The application of an external magnetic field, ~A = (0,x B⊥,0):

The perpendicular B field couples to the fermions orbital motion –
Landau levels for fermions in a magnetic field;

Most well known case, studied by many authors3;

Chiral symmetry breaking for both positive coupling and negative
coupling cases (for the positive coupling case, chiral symmetry
breaking for any finite B field – magnetic catalysis);

B field tends to strengthen the symmetry broken phase, e.g.
higher critical temperature in the presence of perpendicular B.

3Klimenko (1992), Gusynin, Miransky, Shovkovy (1994), (1996), etc
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Applying an external magnetic field ~B

The application of an external magnetic field, ~A = (0,0,y B‖):

The parallel (in-plane) B field couples only to the spins of fermions
– intrinsic Zeeman effect;

The least studied case in field theory4, but common in condensed
matter systems;

Chiral symmetry breaking only for attractive interaction;

parallel B field tends to weaken the symmetry broken phase (e.g.
smaller critical temperature in the presence of in-plane B).

4Caldas and ROR, PRB80, 115428 (2009)
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Effective Potential

Grand canonical partition function:

Z =

∫
D∆

∏
s

Dψ†Dψ exp
{
−SE [ψ̄,ψ,∆]

}
,

SE [ψ̄,ψ,∆] =

∫ ~β

0
dτ

∫
d2x

∑
s=↑,↓

ψ̄s [~∂τ

+i~vFγ1

(
∂x + i

e

c
Ax

)
+ i~vFγ2

(
∂y + i

e

c
Ay

)
+∆ + γ0µ+

σs
2
γ0 gLande µBohrB‖

]
ψs +

N

2~vFλ
∆2

}
,

Ax = 0, Ay = x B⊥



Outline Motivation Model Planar fermionic systems under an external magnetic field Phase diagrams in the presence of external fields Spin asymmetric system in a magnetic field Summary

In-plane magnetic field B‖ 6= 0

The Zeeman energy term is like an effective chemical potential:

∑
s=↑,↓

µs ψ̄
sγ0ψ

s =
∑
s=↑,↓

(
µ+

σs
2

gLande µBohrB‖

)
ψ̄sγ0ψ

s

= µ↑ψ
↑†ψ↑ + µ↓ψ

↓†ψ↓ ,

µ↑ = µ+ δµ, and µ↓ = µ− δµ, with δµ = gLande µBohrB‖/2.

µ can be interpreted as to account for the extra density of electrons
that is supplied to the system by the dopants, while δµ measures the
amount of asymmetry introduced and it is directly proportional to the
in-plane applied external magnetic field.
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The effective potential for B‖ 6= 0, B⊥ = 0

1

N
Veff,R(∆c ,T , µ↑, µ↓) =

1

2~vFλR
∆2

c +
1

π(~vF )2

(
|∆c |3

3
−∆0∆2

c

)
+
|∆c |
2πβ2

{
Li2[−e−β(∆c−µ↑)] + Li2[−e−β(∆c+µ↑)]

}
+

1

2πβ3

{
Li3[−e−β(∆c−µ↑)] + Li3[−e−β(∆c+µ↑)]

}
+ (µ↑ → |µ↓|)

∆0 =
~vFπ
λR

,
1

λR
=

~vF
N

d2Veff(∆c)

d∆2
c

∣∣∣
∆c=∆0
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critical chemical potential µc = ∆0. For δµ ≥ µc , 〈∆〉 = 0.
Magnetic properties for the spin asymmetric system studied in
Caldas and ROR, PRB80, 115428 (2009)
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B‖ 6= 0 and B⊥ 6= 0

With B‖ 6= 0 and B⊥ 6= 0, ~A = (0, x B⊥, y B‖),

Dispersion energy (in two space dimensions) for fermions with
p2 → (2k + 1− s)eB⊥, s = ±1, k = 0,1,2, . . . (Landau levels),∫

d3qE
(2π)3

→ eB⊥
2π

1

β

∑
n

∑
k

n = 0,± 1,±2, . . . , sum over Matsubara’s frequencies for fermions,
ωn = (2n + 1)π/β.
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The effective potential for B‖ 6= 0, B⊥ 6= 0

1

N
Veff,R(β,µ↑,µ↓,∆c) =

∆2
c

2λR
+ ∆2

c

|eB⊥|1/2

2
√

2π
ζ

(
1

2
,

∆2
0

2|eB⊥|

)
− ∆2

0∆2
c

4
√

2π|eB⊥|1/2
ζ

(
3

2
,

∆2
0

2|eB⊥|

)
−
√

2|eB⊥|3/2

π
ζ

(
−1

2
,

∆2
0

2|eB⊥|
+ 1

)
− ∆c |eB⊥|

2π

−|eB⊥|
4πβ

{
ln
(

1 + e−β(∆c−µ↑)
)

+ ln
(

1 + e−β(∆c−|µ↓|)
)

+2
∞∑
k=1

ln

(
1 + e

−β
(√

∆2
c+2k|eB⊥|−µ↑

))

+2
∞∑
k=1

ln

(
1 + e

−β
(√

∆2
c+2k|eB⊥|−|µ↓|

))
+(µ↑ → −µ↑, |µ↓| → −|µ↓|)

}
µ↑ = µ+ δµ, and µ↓ = µ− δµ, with δµ = gLande µBohrB‖/2.
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Figure: Phase diagram for fixed eB⊥ = 0.5∆2
0. Black: δµ = 0.0; blue: δµ = 0.3∆0;

and green: δµ = 0.5∆0.
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δµ = 0.3∆0; red: eB⊥ = 0.5∆2
0;
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δµ = 0.3∆0; red: eB⊥ = 0.5∆2
0; green: eB⊥ = 1.0∆2

0;
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δµ = 0.3∆0; red: eB⊥ = 0.5∆2
0; green: eB⊥ = 1.0∆2

0; and blue:
eB⊥ = 1.5∆2

0

B⊥ enlarges the symmetry broken phase (generic even for charged
scalar field systems, Duarte, Farias, ROR, arXiv:1108.4428)
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For the critical asymmetry case, δµ = µc = ∆0, eB⊥ = 0.1∆2
0:
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For the critical asymmetry case, δµ = µc = ∆0, eB⊥ = 0.1∆2
0:
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Concluding Remarks

magnetic fields applied in different directions can produce a rich
phase diagram

production of multiple critical points in spin asymmetric systems
in the presence of a perpendicular magnetic field (competition
between the symmetry disorder Zeeman energy and the symmetry
ordering Landau energy levels)

Possible practical implications for condensed matter planar
systems:
precise control of the gap in semiconductors devices:
⇒ use oblique magnetic fields at given doping (chemical
potential) and temperature !
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