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The Euler-Heisenberg Lagrangian beyond one loop
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1. QED in a constant external field in the wordline formalism.

Feynman 1950, 1951; E.S. Fradkin 1966; A.M. Polyakov 1987;

Z. Bern & D.A. Kosower 1992; M.J. Strassler 1992; M.G. Schmidt & C.S. 1993;

R. Shaisultanov 1996; M. Reuter, M.G. Schmidt & C.S. 1997; ...

Scalar QED:

(Quenched) effective action Γ(A)

Γ(A) =

∫
d4xL(A) =

∫ ∞

0

dT

T
e−m

2T

∫

x(T )=x(0)

Dx(τ ) e−S[x(τ)]

T = proper time of the loop scalar

S[x(τ )] = worldline action

S = S0 + Sext + Sint

S0 =

∫ T

0

dτ
ẋ2

4
(free propagation)



Sext = ie
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Sint = − e2

8π2
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Generalize: Multiple scalar loops, open scalar lines, . . .

→ First – quantized representation of Γ(A)

→ First – quantized representation of the S-matrix



Spinor QED

Spin 0 → Spin 1
2

Represent electron spin by a Grassmann path integral

E.S. Fradkin, NPB 76 (1966) 588

S[x,A]→
∫
Dψ(τ ) exp

[
−
∫ T

0

dτ
(1

2
ψ · ψ̇ − ieψµFµνψν

)]

ψ(τ1)ψ(τ2) = −ψ(τ2)ψ(τ1)

ψ(T ) = −ψ(0)



Calculation methods:

• The analytical (”string-inspired”) approach (A. Polyakov 1987, M. J .

Strassler 1992,...).

• The semiclassical (”worldline instanton”) approach (I.K. Affleck, O. Al-

varez and N.S. Manton 1982,...).

• Worldline Monte Carlo (H. Gies and K. Langfeld 2001 .....).



The string-inspired approach

Strategy:

1. Manipulate the path integral into gaussian form

2. Wick contract using worldline correlators

〈xµ(τ1)x
ν(τ2)〉 = −GB(τ1, τ2) δ

µν

GB(τ1, τ2) = |τ1 − τ2| −
(τ1 − τ2)2

T

〈ψµ(τ1)ψ
ν(τ2)〉 = GF (τ1, τ2) δ

µν

GF (τ1, τ2) = sign(τ1 − τ2)



Bern-Kosower master formula

Γ[{ki, εi}] = (−ie)N(2π)Dδ(
∑

ki)

∫ ∞

0

dT

T
(4πT )−

D
2 e−m

2T
N∏

i=1

∫ T

0

dτi

× exp
{ N∑

i,j=1

[
1

2
GBijki · kj + iĠBijki · εj +

1

2
G̈Bijεi · εj]

}
|lin(ε1,...,εN )



QED in a constant external field

Easy implementation of a constant background field Fµν:

In Fock-Schwinger gauge,

Aµ(x) = −1

2
F µνxν

so that the worldline Lagrangian changes only by quadratic terms:

L→ L +
1

2
iexµFµνẋ

ν − ieψµFµνψν

Thus this change can be absorbed into the Green’s functions and path inte-

gral determinants:



• Change worldline Green’s functions

GB(τ1, τ2)→ GB(τ1, τ2) =
1

2(eF )2

( eF

sin(eFT )
e−ieFTĠB12+ieF ĠB12−

1

T

)

GF (τ1, τ2)→ GF (τ1, τ2) = GF12
e−ieFTĠB12

cos(eFT )

• Change free path integral determinants

(4πT )−
D
2 → (4πT )−

D
2 det−

1
2

[sin eFT

eFT

]
(Scalar QED)

(4πT )−
D
2 → (4πT )−

D
2 det−

1
2

[tan eFT

eFT

]
(Spinor QED)

R. Shaisultanov, PLB 378, 354 (1996)

M. Reuter, M.G. Schmidt, C.S., Ann. Phys. 259, 313 (1997)



Bern-Kosower type master formula for the scalar QED N - photon scattering

amplitude in a constant field:

Γscal[{ki, εi}] = (−ie)N(2π)Dδ(
∑

ki)

∫ ∞

0

dT

T
(4πT )−

D
2 e−m

2Tdet−
1
2
[sin(eFT )

eFT

]

×
N∏

i=1

∫ T

0

dτi exp
{ N∑

i,j=1

[
1

2
ki · GBij · kj − iεi · ĠBij · kj +

1

2
εi · G̈Bij · εj]

}
|lin(ε1,...,εN)

This formula is valid off-shell → can use it to construct multiloop Euler-

Heisenberg Lagrangians by sewing off pairs of photons with propagators.



2. The one-loop Euler-Heisenberg Lagrangian: weak field expan-

sion, amplitudes, imaginary part

The one-loop EHL just comes from the determinant factors det−
1
2

[
sin eFT
eFT

]
, det−

1
2

[
tan eFT
eFT

]
,

up to renormalization:

Scalar QED:

L(1)
scal(F ) =

1

16π2

∫ ∞

0

dT

T 3
e−m

2T
[ (eaT )(ebT )

sinh(eaT ) sin(ebT )

+
e2

6
(a2 − b2)T 2 − 1

]

Spinor QED:

L(1)
spin(F ) = − 1

8π2

∫ ∞

0

dT

T 3
e−m

2T
[ (eaT )(ebT )

tanh(eaT ) tan(ebT )

−e
2

3
(a2 − b2)T 2 − 1

]

Here a, b are the two invariants of the Maxwell field, related to E, B by

a2 − b2 = B2 − E2, ab = E ·B.



The EHL has the information on

• The N photon amplitudes in the low energy limit (where all photon

energies are small compared to the electron mass, ωi � m ). The

amplitudes can be constructed explicitly from the weak field expansion

coefficients ckl, defined by

L(F ) =
∑

k,l

ckl a
2kb2l

• Schwinger pair creation, represented by the imaginary part of the EHL:

ImL(1)
spin(E) =

m4

8π3
β2

∞∑

k=1

1

k2
exp

[
−πk
β

]

ImL(1)
scal(E) = − m4

16π3
β2

∞∑

k=1

(−1)k

k2
exp

[
−πk
β

]

(β = eE/m2).

The electric field creates electron-positron pairs (vacuum tunneling).

Weak field limit β � 1 ⇒ only k = 1 relevant.



At any loop order, the photon amplitudes and Schwinger pair creation rates

are connected by a Borel dispersion relation :

Weak field expansion at l loops:

L(l)(E) =

∞∑

n=2

c(l)(n)(
eE

m2
)2n

c(l)(n)
n→∞∼ c(l)∞Γ[2n− 2]

Leading asymptotic growth rate same at each loop order

(S.L. Lebedev, V.I. R 1984; G.V. Dunne & CS)

Borel dispersion relation:

ImL(l)(E) ∼ c(l)∞ e−
πm2

eE

for β → 0.



3. The two-loop Euler-Heisenberg Lagrangian: mass renormaliza-

tion, Lebedev-Ritus exponentiation

L(2)
scal,spin(F ) known only in terms of intractable two parameter integrals

(V. I. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, M. Reuter, M.G. Schmidt

& C.S. 1997)

However, the first few weak field coefficients can be calculated, and there is

a Schwinger-type formula for ImL(2)
spin(E):

ImL(2)
spin(E) =

m4

8π3
β2

∞∑

k=1

απKk(β) exp

[
−πk
β

]

(α = e2

4π)

Kk(β) = − ck√
β

+ 1 + O(
√
β)

c1 = 0, ck =
1

2
√
k

k−1∑

l=1

1√
l(k − l)

, k ≥ 2



Weak field limit:

ImL(1)
spin(E) + ImL(2)

spin(E)
β→0∼ m4β2

8π3
(1 + απ) e−

π
β

S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will lead to

exponentiation

ImL(1)
spin(E) + ImL(2)

spin(E) + ImL(3)
spin(E) + . . .

β→0∼ m4β2

8π3
eαπ e−

π
β

then the result can be interpreted in the tunneling picture as the corrections

to the Schwinger pair creation rate due to the pair being created with a

negative Coulomb interaction energy .

For Scalar QED, this formula was already known.....



4. An all-loop conjecture from worldline instantons

AAM conjecture (I.K. Affleck, O. Alvarez, N.S. Manton 1982):

For Scalar QED and in the weak field limit,

∞∑

l=1

ImL(l)
scal(E)

β→0∼ −m
4β2

16π3
exp[−π

β
+ απ]

= ImL(1)
scal(E) eαπ

Remarkable:

• True all-loop result, receives contributions from an infinite set of graphs of

arbitrary loop order (although non-quenched diagrams get suppressed in this

limit).

• Includes mass renormalization! (!?)

• Extremely simple derivation (semi-classical worldline instanton approxima-

tion of the worldline path integral representation of Lscal(E)).



In terms of Feynman diagrams:

Number of external legs

Number of loops 4 6 8 · · ·

1 · · ·

2 · · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

Moreover, the mass appearing in (1.15) is argued to be still the physical
renormalized mass, which means that the above figure should strictly speak-
ing include also the mass renormalization counter diagrams which appear in
EHL calculations starting from two loops.

The derivation given in [33] is very simple, if formal. Based on a station-
ary path approximation of Feynman’s worldline path integral representation
[34] of Lscal(E), it actually uses only a one-loop semiclassical trajectory, and
arguments that this trajectory remains valid in the presence of virtual pho-
ton insertions. This also implies that non-quenched diagrams do not con-
tribute in the limit (1.15), which is why we have shown only the quenched
ones in fig. 1.

Although the derivation of (1.15) in [33] cannot be considered rigorous,
an independent heuristic derivation of (1.15), as well as extension to the
spinor QED case (with the same factor of eαπ) was given by Lebedev and
Ritus [31] through the consideration of higher-order corrections to the pair
creation energy in the vacuum tunneling picture. At the two-loop level,
(1.15) and its spinor QED extension state that

6

But a direct calculation of these diagrams is hopeless...



Strange: All-order loop summation has produced the finite factor eαπ !

Such things are not supposed to happen in QED.

C.V. Dunne & C.S., 2004:

AAM conjecture + modest assumptions→Convergence of the perturbation series

for the QED N photon in the quenched (one electron loop) approximation.

(Using Borel analysis and spinor helicity).

• This generalizes a 1977 conjecture by Cvitanovic on g − 2.

• If true, it would indicate extensive cancellations between Feynman diagrams,

presumably due to gauge invariance.



Three predictions/consistency checks for the three-loop EHL:

1. limn→∞
c(3)(n)

c(1)(n)
= 1

2α
2

2. Only the quenched part contributes to this limit.

3. The convergence of c(3)(n)

c(1)(n)
should not be slower than the one of c(2)(n)

c(1)(n)
.

NOT EASY TO VERIFY:

• First attempt: Calculation of the 3-loop EHL in D = 4 – too hard! No

essential dependence on dimension→ Try to show the analogous statements

for the massive Schwinger model.

• Second attempt: Feynman diagram calculation of the 3-loop 2D EHL failed

because of spurious IR divergences (→ QFEXT1009).

• Third attempt: Calculation of the 3-loop 2D EHL in the worldline formalism

yielded a manifestly IR (and UV) finite parameter integral.



5. The three-loop Euler-Heisenberg Lagrangian for 2D QED

(I. Huet, M. Rausch de Traubenberg and C.S., work in progress)

Three Feynman diagrams at three-loop:

A B C

Solid line = fermion propagator in the constant field,

F =




0 f

−f 0




A,B quenched, C non-quenched.



Diagram C is easy, and gives

L3C(f ) =
e3

16π3f

∫ ∞

0

dzdz′dẑdz′′
sinh z sinh z′ sinh ẑ sinh z′′

[sinh(z + z′) sinh(ẑ + z′′)]2

× e−2κ(z+z
′+ẑ+z′′)

sinh z sinh z′ sinh(ẑ + z′′) + sinh ẑ sinh z′′ sinh(z + z′)

(κ = m2/2ef ).

From this we got the first 12 weak field expansion coefficients, which was sufficient

to verify that they are indeed asymptotically (exponentially) suppressed.



The results for diagrams A + B are lengthy:

L3(A+B)
spin (f ) = − e4

(4π)3

∫ ∞

0

dT

T 2
e−m

2T Z

tanhZ

4∏

i=1

∫ T

0

dτi

×(2I1234 + I1324 + 4I123 + 2I12 + 4I13 + I12,34 + 2I13,24)

where, for example,

Iijkl =
tr({ijkl}S)

∆

with

{i1i2 . . . in}S := ĠBi1i2ĠBi2i3 · · · ĠBini1 − GFi1i2GFi2i3 · · · GFini1
(∆ is a determinant also involving the worldline Green’s functions).

• This is already the sum of A and B.

• Manifestly UV and IR finite term-by-term.



IN PROGRESS: Calculation of the expansion coefficients for the quenched part...

FINAL RESULTS WILL BE SHOWN IN QFEXT2013 !


