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The Euler-Heisenberg Lagrangian beyond one loop

(with I. Huet and M. Rausch de Traubenberg)
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QED in a constant external field in the wordline formalism.

The one-loop Euler-Heisenberg Lagrangian: weak field expansion, ampli-
tudes, imaginary part.

. The two-loop Euler-Heisenberg Lagrangian: mass renormalization, Lebedev-

Ritus exponentiation.

An all-loop conjecture from worldline instantons.

. The three-loop Euler-Heisenberg Lagrangian for 2D QED.

. Conclusions.



1. QED in a constant external field in the wordline formalism.

Feynman 1950, 1951; E.S. Fradkin 1966; A.M. Polyakov 1987;
Z. Bern & D.A. Kosower 1992; M.J. Strassler 1992; M.G. Schmidt & C.S. 1993;
R. Shaisultanov 1996; M. Reuter, M.G. Schmidt & C.S. 1997; ...

Scalar QED:
(Quenched) effective action I'(A)
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T = proper time of the loop scalar

Slz(T)] = worldline action
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St = —52 / dm / dTQ 2 E (internal photons)
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Generalize: Multiple scalar loops, open scalar lines, . ..

— First — quantized representation of I'(A)

— Flirst — quantized representation of the S-matrix



Spinor QED

Spin 0 — Spin %

Represent electron spin by a Grassmann path integral
E.S. Fradkin, NPB 76 (1966) 588
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Calculation methods:

e The analytical ("string-inspired”) approach (A. Polyakov 1987, M. J .
Strassler 1992,...).

e The semiclassical ("worldline instanton”) approach (I.K. Affleck, O. Al-
varez and N.S. Manton 1982,...).

e Worldline Monte Carlo (H. Gies and K. Langfeld 2001 .....).



The string-inspired approach

Strategy:
1. Manipulate the path integral into gaussian form

2. Wick contract using worldline correlators
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Gp(m,7) = |11 — 7| — T

(W) (1)) = Gp(Ti, ) 0"

Gp(m, ™) = sign(m — 1)



Bern-Kosower master formula
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QED in a constant external field

Fasy implementation of a constant background field F),,:
In Fock-Schwinger gauge,

1
AM(I’) = —iF'qufV

so that the worldline Lagrangian changes only by quadratic terms:
L — L L FE,a" — et "
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Thus this change can be absorbed into the Green’s functions and path inte-

gral determinants:



e Change worldline Green’s functions
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e Change free path integral determinants
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R. Shaisultanov, PLB 378, 354 (1996)
M. Reuter, M.G. Schmidt, C.S., Ann. Phys. 259, 313 (1997)

1

T

)



Bern-Kosower type master formula for the scalar QED N - photon scattering
amplitude in a constant field:
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This formula is valid off-shell — can use it to construct multiloop Euler-
Heisenberg Lagrangians by sewing off pairs of photons with propagators.



2. The one-loop Euler-Heisenberg Lagrangian: weak field expan-
sion, amplitudes, imaginary part

The one-loop EHL just comes from the determinant factors det_% [%} : det_% [—ta:;ZTTT} ,

up to renormalization:

Scalar QED:
LENF) = @ i %emQT[sinh((Z?)(sﬁT(ng)
+%2(a2 — 041" — 1]
Spinor QED:
LOLF) = —8—;2 0 C:ip—ze_m2T [tanh((eeC;TT))(fg()ebT)

62

—§(a2 — b)T? — 1}
Here a,b are the two invariants of the Maxwell field, related to E, B by

>~ =DB2—F ab=E-B.



The EHL has the information on

e The N photon amplitudes in the low energy limit (where all photon
energies are small compared to the electron mass, w; < m ). The
amplitudes can be constructed explicitly from the weak field expansion
coefficients cy;, defined by

ﬁ(F) = Z Ckl CL%le

k)l

e Schwinger pair creation, represented by the imaginary part of the EHL:
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(E) =

167r3

(B =eE/m?).
The electric field creates electron-positron pairs (vacuum tunneling).

Weak field limit § < 1 = only k = 1 relevant.



At any loop order, the photon amplitudes and Schwinger pair creation rates
are connected by a Borel dispersion relation :

Weak field expansion at [ loops:

l l 2n
() = 3 )
D(n) "7 DT2n — 2]

Leading asymptotic growth rate same at each loop order
(S.L. Lebedev, V.I. R 1984; G.V. Dunne & CS)

Borel dispersion relation:

for 8 — 0.



3. The two-loop Euler-Heisenberg Lagrangian: mass renormaliza-
tion, Lebedev-Ritus exponentiation

Eg;l,spm(F ) known only in terms of intractable two parameter integrals
(V. I. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, M. Reuter, M.G. Schmidt

& C.S. 1997)

However, the first few weak field coefficients can be calculated, and there is
a Schwinger-type formula for ms?) (E):
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Weak field limit:

g0 m*3?
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S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will lead to
exponentiation

30 m4ﬁ2 e e_%
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then the result can be interpreted in the tunneling picture as the corrections
to the Schwinger pair creation rate due to the pair being created with a
negative Coulomb interaction energy .

(E) + ImL?) (E) + ImL?) (E) + ...

spin spin
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For Scalar QED, this formula was already known.....



4. An all-loop conjecture from worldline instantons
AAM conjecture (I.K. Affleck, O. Alvarez, N.S. Manton 1982):
For Scalar QED and in the weak field limit,
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Remarkable:

e True all-loop result, receives contributions from an infinite set of graphs of
arbitrary loop order (although non-quenched diagrams get suppressed in this
limit).

e [ncludes mass renormalization! (!7)

e Extremely simple derivation (semi-classical worldline instanton approxima-
tion of the worldline path integral representation of Lg..i(E)).



In terms of Feynman diagrams:

Number of external legs

Number of loops 4 6 8

But a direct calculation of these diagrams is hopeless...



Strange: All-order loop summation has produced the finite factor e*™ !
Such things are not supposed to happen in QED.

C.V. Dunne & C.S., 2004:
AAM conjecture + modest assumptions — Convergence of the perturbation series
for the QED N photon in the quenched (one electron loop) approximation.

(Using Borel analysis and spinor helicity).

e This generalizes a 1977 conjecture by Cvitanovic on g — 2.

e If true, it would indicate extensive cancellations between Feynman diagrams,
presumably due to gauge invariance.



Three predictions/consistency checks for the three-loop EHL:

| ) ,
1. lim,, o0 E(TEZ; = 30’

2. Only the quenched part contributes to this limit.

c3) (n)
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NOT EASY TO VERIFY:

c2) (n)
el

should not be slower than the one of )’

3. The convergence of

e First attempt: Calculation of the 3-loop EHL in D = 4 — too hard! No
essential dependence on dimension — Try to show the analogous statements

for the massive Schwinger model.

e Second attempt: Feynman diagram calculation of the 3-loop 2D EHL failed

because of spurious IR divergences (— QFEXT1009).

e Third attempt: Calculation of the 3-loop 2D EHL in the worldline formalism

yielded a manifestly IR (and UV) finite parameter integral.



5. The three-loop Euler-Heisenberg Lagrangian for 2D QED
(I. Huet, M. Rausch de Traubenberg and C.S., work in progress)

Three Feynman diagrams at three-loop:

oo

Solid line = fermion propagator in the constant field,

[
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A B quenched, C non-quenched.



Diagram C is easy, and gives

3 00 inh z sinh 2’ sinh Z sinh 2"
£300f) = _° / dzdy dzdz" 22
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8 sinh z sinh 2’ sinh(Z + 2) + sinh 2 sinh 2 sinh(z + 2/)
(k = m?/2ef).

From this we got the first 12 weak field expansion coefficients, which was sufficient
to verify that they are indeed asymptotically (exponentially) suppressed.



The results for diagrams A + B are lengthy:
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where, for example,

I tr({ijkl}s)
ikl = A
with
{iria...in}s = GBz'l@'QGBz’Qz'?, e GB@'nil — GFiyiyGFigis =+ GFini,

(A is a determinant also involving the worldline Green’s functions).

e This is already the sum of A and B.
e Manifestly UV and IR finite term-by-term.



IN PROGRESS: Calculation of the expansion coeflicients for the quenched part...
FINAL RESULTS WILL BE SHOWN IN QFEXT2013 !



