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⋆ (infinitely) long axially symmetric & translationally invariant

field configurations with azimuthal orientation

⋆ induced metric has deficit angle

• gravitational lenses

• candidate for structure formation

⋆ symmetry restored at string center =⇒ candidate for baryogenesis

⋆ observable today? classically unstable in the standard model

⋆ dynamical stabilization through quantum effects?

can be perfectly studied with spectral methods

⋆ fermion bound state and vacuum energies are same O(~)

⋆ non–trivial structure at spatial infinity

⋆ gauge invariant field combinations are smooth at spatial infinity

⋆ individual Feynman diagrams are not gauge invariant



⋆ static string profiles in a SUL(2) gauge theory

• vector meson (temporal gauge):

~W = n sin(ξ1)
fG(ρ)

gρ
ϕ̂

(

sin(ξ1) icos(ξ1) e
−inϕ

−icos(ξ1) e
inϕ −sin(ξ1)

)

• Higgs meson:

Φ = vfH(ρ)

(

sin(ξ1) e
−inϕ −icos(ξ1)

−icos(ξ1) sin(ξ1) e
inϕ

)

• ξ1 parameterizes orientation in iso–space

• n counts winding of the string (usually n = 1)

• fG, fH equiv. to Nielson–Olesen profiles
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• ξ1 parameterizes orientation in iso–space

• n counts winding of the string (usually n = 1)

• fG, fH equiv. to Nielson–Olesen profiles

• boundary conditions

ρ −→ 0 : fG , fH −→ 0

ρ −→ ∞ : fG , fH −→ 1

• massless particles at the origin, gain of energy?

• non–trivial structure at spatial infinity:

neither Born nor Feynman series well defined



II) Spectral (Phase Shift) Method

⋆ phase shift approach: summing the changes of zero–point energies
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~
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ǫj + ~

∫

dk ωk ∆ ρren.(k)

ǫj : true bound state energies

ωk =
√
k2 +m2 energy of continuum states

∆ρ(k) : change in density of continuum states (in momentum space)

= 1
π

d
dkδ(k)

δ(k) : phase shift
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⋆ requires angular momentum decomposition



⋆ interface formalism (energy per unit length)

• start from energy momentum tensor in field theory

• integrate over momentum of translationally invariant subspace

• dimensional regularization for associated UV divergence (*)

• scattering problem in orthogonal two–dim. subspace

• cancel divergence (*) by sum rules for scattering data
generalization to Levison’s theorem

E
(N)
δ =

1

4π

∑

ℓ

{

Dℓ

∫ ∞

0

dk

π

[

ω2
k ln
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ω2
k

µ2

)

− k2
]

d

dk
[δℓ(k)]N

+
∑

j

[

(ǫj,ℓ)
2 ln

(ǫj,ℓ)
2

µ2
− (ǫj,ℓ)

2 +m2

]}

integration before summation!
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• exchange of sum and integral only possible after
rotating to imaginary momentum axis, t = ik.
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• δℓ: total phase shift in (angular momentum) channel ℓ
(phase of detS)

• ωk =
√
k2 +m2: energy of continuum mode

• Dℓ: degeneracy in (angular momentum) channel ℓ

• N : number of Born subtractions to render integral finite

• ǫj,ℓ: bound state energies

• µ: redundant renormalization scale
(sum rules for scattering data)



⋆ Feynman diagrams (add back in subtractions)
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• σ: background potential induced by string

⋆ counterterms

ECT =
∑

i

ciE
(i)[σ]

• ci: counterterm coefficients computed from renormalization condition

in the perturbative sector

• E(i): local (gauge invariant) energy functionals from the classical theory

⋆ total vacuum energy

Evac = E
(N)
δ + E

(N)
FD + ECT



III) Fermions in String Background

⋆ fermions dominate vacuum energy at large Nc

⋆ pure gauge at spatial infinity

U = PLexp (in̂ · ~τξ1) + PR with n̂ =
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so that g ~W ∼ U †∇U and Φ ∼ UΦ0

⋆ H −→ U †HU

is not an option, because of 1/ρ2 singularity at the center

(no analytic continuation of scattering data)

⋆ return string at spatial infinity (as for QED flux tubes)

• numerically very costly

• proof–of–principle calculation:

vacuum polarization energy small in MS.
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⋆ major difference to QED flux tubes:

gauge transformation that unwinds the string is unique:

U(ϕ) = U(ϕ + 2π)

even though there are fractional fluxes.

• no constraint on closed flux lines

⋆ radially dependent gauge transformation

H −→ U †(ρ, ϕ)H U(ρ, ϕ)

with

U(ρ, ϕ) = PLexp (in̂ · ~τ ξ(ρ)) + PR

⋆ well defined problem for ξ(0) = 0 and ξ(∞) = ξ1.

⋆ local gauge invariance: specific shape of ξ irrelevant

−→ further support for phase shift method



⋆ field parameterization

fH(ρ) = 1− e
− ρ

wH

fG(ρ) = 1− e
−
(

ρ
wG

)2

ξ(ρ) = ξ1



1− e
−
(

ρ
wξ

)2




• wH , wG, ξ1: variational parameters for physical string

• wξ: gauge parameter, not measurable

• similarly, the scale parameter for the fake boson field
is not measurable
(technicality to simplify 3rd and 4th order FDs)



⋆ data in MS scheme (scale set by fermion mass)

wξ EFD Eδ EB Evac

0.5 -0.2515 0.3489 0.0046 0.1020
1.0 -0.0655 0.1606 0.0032 0.0983
2.0 -0.0358 0.1294 0.0038 0.0974
3.0 -0.0320 0.1235 0.0056 0.0971
4.0 -0.0302 0.1193 0.0080 0.0971

wH = 2.0

wG = 2.0

ξ1 = 0.4π

• EFD renormalized first and second order Feynman diagram

• Eδ phase shift contribution, first and second Born order removed

∗ computed by analytic continuation

∗ log. div. of 3rd and 4th order by a fake field

∗ numerically very costly

∗ about 1 . . . 2% numerical error

• EB remnant of fake field
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1.0 -0.0655 0.1606 0.0032 0.0983
2.0 -0.0358 0.1294 0.0038 0.0974
3.0 -0.0320 0.1235 0.0056 0.0971
4.0 -0.0302 0.1193 0.0080 0.0971

wH = 2.0

wG = 2.0

ξ1 = 0.4π

• EFD renormalized first and second order Feynman diagram

• Eδ phase shift contribution, first and second Born order removed

• EB remnant of fake field

gauge invariance verified within numerical accuracy

spectral methods to compute vacuum energies verified



⋆ on–shell scheme for ECT

add (maximally four) finite local and gauge–invariant counterterms:

• no–tadpole interaction

• Higgs mass unchanged

• normalization of Higgs particle unchanged

• normalization of vector meson unchanged

• vector meson mass will be a prediction,
−→ tune gauge coupling to reproduce MW



⋆ results in on–shell scheme
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• finite counterterm contribution adds positively

• quantum effects provide some binding for thin strings (Landau ghost ?)

• competitive with classical mass only for

(i) fermion masses about 1TeV

(ii) many internal degrees of freedom (color)



⋆ total energy: E = Ecl + 3Evac (NC = 3)

⋆ classical contribution:

Ecl

m2
= 2π

∫ ∞

0

ρdρ

{

n2 sin2 ξ1

[

2

g2

(

f ′
G

ρ

)2

+
f 2
H

f 2ρ2
(1− fG)

2

]

+
f ′2
H

f 2
+

µ2
h

4f 2

(

1− f 2
H

)2

}

(quantities under the integral are scaled to be dimensionless, µh =
mH

vf
)



⋆ total energy: E = Ecl + 3Evac (NC = 3)
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⋆ numerical results:
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IV) Charged Cosmic Strings

⋆ Cosmic strings induce fermionic bound state levels: ǫi < m

• ǫi eigenvalues of two–dimensional Hamiltonian

• for ξ1 = π/2 an exact zero mode exists

• for wide strings, wH & 4 many levels emerge (100)

⋆ bound states carry longitudinal momenta:

Ei(pn) =
√

ǫ2i + p2n pn =
nπ

L
(length of the string)

⋆ populating these levels may form a charged string with
energy less than equally many free fermions

⋆ binding energy is of same order as Evac, both in NC and ~.

⋆ require leading contribution to the total energy as L → ∞
∑

n

−→ L

π

∫

dp



⋆ search for the minimum of bound state contribution

• introduce chemical potential µ ≤ m

• populate all levels with Ei(p) ≤ µ

• Fermi momentum for each populated level pFi (µ) =
√

µ2 − ǫ2i
(states with ǫi > µ are not populated)

⋆ charge density (per unit length)

Q(µ) =
∑

i

pFi (µ)

π

monotonously rising, can be inverted

µ = µ(Q) and pFi = pFi (Q)

⋆ binding energy (density) at prescribed charge (density)

Ebind(Q) =
1

π

∑

i

∫ pFi (Q)

0

dp

[

√

ǫ2i + p2 −m

]

(

relative to

free fermions

)
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• endpoint: all available levels populated

• small charge: narrow string preferred

• large charge: wide string preferred



⋆ adding more configurations
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• delicate balance between Evac and ǫi:

min (Ebind + Evac) ∝ Q

• strong variation with wH

• essentially independent of wG and ξ1

⋆ identify configurations along the envelope to compute associated Ecl
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⋆ about m = 1, . . . , 500 configurations for which Evac and ǫi
have been calculated

⋆ prescribe Q and compute

E
(m)
tot (Q) = E

(m)
cl +NC

[

E(m)
vac + E

(m)
bind(Q)

]

⋆ find minimum by scanning through m

⋆ stable configuration if minm

[

E
(m)
tot (Q)

]

< 0

⋆ equivalent to self–consistent solution if {m}
covered configuration space completely

⋆ negative search for physically motivated parameters (top–quark)

v = 177GeV , g = 0.72 , f = 0.99 , mH = 140GeV

because of large E
(m)
cl

⋆ but: E
(m)
cl decreases rapidly with increasing f
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⋆ stable configurations for f & 1.7

⋆ safe against Landau ghost problems (widths parameters large)

⋆ stable strings should emerge if a strongly interacting fermion doublet
with twice the top quark mass existed

⋆ stable configurations have ξ1 ≈ 0 (since we keep g small)



⋆ total mass

• small to moderate binding: M ≈ LQm

• typical charge (density) for binding: Q ≈ 5m

• typical fermion mass at binding: m ≈ 300GeV

• cosmological scale: L ≈ R⊙

M ≈ 10−20M⊙

• too light to have cosmological impact
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⋆ motivation: interesting configurations in many field theories
classically unstable (in standard model)
same O(~) as bound state energy

⋆ problem: non–trivial structure at spatial infinity
(no FDs, no scattering problem)

⋆ solution: subset of local gauge transformations

⋆ condition: invariance within this subset
further support for phase shift method
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⋆ results: • small (tiny) Evac for standard model parameters
fermion mass O(1TeV) needed to compete with Ecl

(not safe against Landau ghost)

• populating bound states =⇒ charged cosmic string
(systematic ~ expansion: Evac ∼ Ebind)

• charged cosmic strings stable if strongly interacting
fermion (doublet) with mass of 300MeV exists
(no Landau ghost problem)

• critical charge density quickly decreases as fermion
mass is further increased

• stationary configuration is Higgs dominated

⋆ future work: • boson loops

• currents along the string

• closed strings


