Cosmic Strings Stabilized

by Fermion Fluctuations

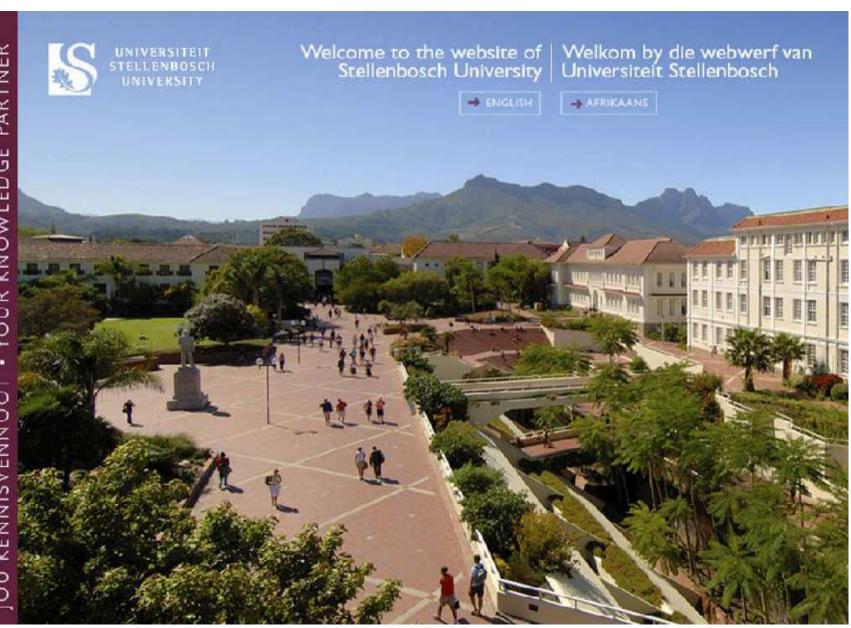
H. Weigel

(Stellenbosch University, Institute for Theoretical Physics)

QFEXT 2011, Benasque (Spain): Sept., 21st, 2011

Presentation is based on:

HW, M. Quandt, N. Graham, and O. Schröder, Nucl. Phys. B831 (2010) 306 HW and M. Quandt, Phys. Lett. B690 (2010) 514
HW, N. Graham, and M. Quandt, Phys. Rev. Lett. 106 (2011) 101601
N. Graham, M. Quandt, and HW, Phys. Rev. D84 (2011) 025017



 \star (infinitely) long axially symmetric & translationally invariant field configurations with azimuthal orientation

- \star (infinitely) long axially symmetric & translationally invariant field configurations with azimuthal orientation
- \star induced metric has deficit angle
 - gravitational lenses
 - candidate for structure formation
- \star symmetry restored at string center \implies candidate for baryogenesis

- \star (infinitely) long axially symmetric & translationally invariant field configurations with azimuthal orientation
- \star induced metric has deficit angle
 - gravitational lenses
 - candidate for structure formation
- * symmetry restored at string center \implies candidate for baryogenesis * observable today? classically unstable in the standard model \swarrow

- \star (infinitely) long axially symmetric & translationally invariant field configurations with azimuthal orientation
- \star induced metric has deficit angle
 - gravitational lenses
 - candidate for structure formation
- * symmetry restored at string center \implies candidate for baryogenesis * observable today? classically unstable in the standard model
- \star dynamical stabilization through quantum effects?

can be perfectly studied with spectral methods

 \star fermion bound state and vacuum energies are same $\mathcal{O}(\hbar)$

- \star (infinitely) long axially symmetric & translationally invariant field configurations with azimuthal orientation
- \star induced metric has deficit angle
 - gravitational lenses
 - candidate for structure formation
- \star symmetry restored at string center \Longrightarrow candidate for baryogenesis
- \star observable today? classically unstable in the standard model \swarrow
- \star dynamical stabilization through quantum effects?

can be perfectly studied with spectral methods

- \star fermion bound state and vacuum energies are same $\mathcal{O}(\hbar)$
- \star non–trivial structure at spatial infinity
- \star gauge invariant field combinations are smooth at spatial infinity
- \star individual Feynman diagrams are not gauge invariant

* static string profiles in a $SU_L(2)$ gauge theory

• vector meson (temporal gauge):

$$\vec{W} = n\sin(\xi_1)\frac{f_G(\rho)}{g\rho}\hat{\varphi}\begin{pmatrix}\sin(\xi_1) & i\cos(\xi_1)\,\mathrm{e}^{-in\varphi}\\ -i\cos(\xi_1)\,\mathrm{e}^{in\varphi} & -\sin(\xi_1)\end{pmatrix}$$

• Higgs meson:

$$\Phi = v f_H(\rho) \begin{pmatrix} \sin(\xi_1) e^{-in\varphi} & -i\cos(\xi_1) \\ -i\cos(\xi_1) & \sin(\xi_1) e^{in\varphi} \end{pmatrix}$$

- ξ_1 parameterizes orientation in iso-space
- n counts winding of the string (usually n = 1)
- f_G , f_H equiv. to Nielson–Olesen profiles

- \star static string profiles in a $SU_L(2)$ gauge theory
 - vector meson (temporal gauge):

$$\vec{W} = n\sin(\xi_1)\frac{f_G(\rho)}{g\rho}\hat{\varphi}\begin{pmatrix}\sin(\xi_1) & i\cos(\xi_1)\,\mathrm{e}^{-in\varphi}\\ -i\cos(\xi_1)\,\mathrm{e}^{in\varphi} & -\sin(\xi_1)\end{pmatrix}$$

• Higgs meson:

$$\Phi = v f_H(\rho) \begin{pmatrix} \sin(\xi_1) e^{-in\varphi} & -i\cos(\xi_1) \\ -i\cos(\xi_1) & \sin(\xi_1) e^{in\varphi} \end{pmatrix}$$

- ξ_1 parameterizes orientation in iso-space
- n counts winding of the string (usually n = 1)
- f_G , f_H equiv. to Nielson–Olesen profiles
- boundary conditions

$$\begin{array}{ll} \rho \longrightarrow 0: & f_G, f_H \longrightarrow 0\\ \rho \longrightarrow \infty: & f_G, f_H \longrightarrow 1 \end{array}$$

• *massless* particles at the origin, gain of energy?

- \star static string profiles in a $SU_L(2)$ gauge theory
 - vector meson (temporal gauge):

$$\vec{W} = n\sin(\xi_1)\frac{f_G(\rho)}{g\rho}\hat{\varphi}\begin{pmatrix}\sin(\xi_1) & i\cos(\xi_1)\,\mathrm{e}^{-in\varphi}\\ -i\cos(\xi_1)\,\mathrm{e}^{in\varphi} & -\sin(\xi_1)\end{pmatrix}$$

• Higgs meson:

$$\Phi = v f_H(\rho) \begin{pmatrix} \sin(\xi_1) e^{-in\varphi} & -i\cos(\xi_1) \\ -i\cos(\xi_1) & \sin(\xi_1) e^{in\varphi} \end{pmatrix}$$

- ξ_1 parameterizes orientation in iso-space
- n counts winding of the string (usually n = 1)
- f_G , f_H equiv. to Nielson–Olesen profiles
- boundary conditions

$$\begin{array}{cccc} \rho & \longrightarrow & 0: & & f_G \,, f_H \, \longrightarrow \, 0 \\ \rho & \longrightarrow \, \infty: & & f_G \,, f_H \, \longrightarrow \, 1 \end{array}$$

- *massless* particles at the origin, gain of energy?
- non-trivial structure at spatial infinity: neither Born nor Feynman series well defined

 \star phase shift approach: summing the changes of zero–point energies

$$E_{\rm vac} = \frac{\hbar}{2} \sum_{n} \left(\omega_n - \omega_n^{(0)} \right) \bigg|_{\rm ren.} = \frac{\hbar}{2} \sum_{j} \epsilon_j + \hbar \int dk \, \omega_k \, \Delta \, \rho_{\rm ren.}(k)$$

 ϵ_j : true bound state energies

 $\omega_k = \sqrt{k^2 + m^2}$ energy of continuum states

- $\Delta
 ho(k)$: change in density of continuum states (in momentum space) = $\frac{1}{\pi} \frac{d}{dk} \delta(k)$
 - $\delta(k)$: phase shift

II) Spectral (Phase Shift) Method

 \star phase shift approach: summing the changes of zero–point energies

$$E_{\rm vac} = \frac{\hbar}{2} \sum_{n} \left(\omega_n - \omega_n^{(0)} \right) \bigg|_{\rm ren.} = \frac{\hbar}{2} \sum_{j} \epsilon_j + \hbar \int dk \, \omega_k \, \Delta \, \rho_{\rm ren.}(k)$$

 ϵ_j : true bound state energies

 $\omega_k = \sqrt{k^2 + m^2}$ energy of continuum states

 $\Delta
ho(k)$: change in density of continuum states (in momentum space) = $\frac{1}{\pi} \frac{d}{dk} \delta(k)$

 $\delta(k)$: phase shift

 \star requires angular momentum decomposition

\star interface formalism (energy per unit length)

- start from energy momentum tensor in field theory
- integrate over momentum of translationally invariant subspace
- dimensional regularization for associated UV divergence (*)
- scattering problem in orthogonal two-dim. subspace
- cancel divergence (*) by sum rules for scattering data generalization to Levison's theorem

$$E_{\delta}^{(N)} = \frac{1}{4\pi} \sum_{\ell} \left\{ D_{\ell} \int_{0}^{\infty} \frac{dk}{\pi} \left[\omega_{k}^{2} \ln \left(\frac{\omega_{k}^{2}}{\mu^{2}} \right) - k^{2} \right] \frac{d}{dk} [\delta_{\ell}(k)]_{N} + \sum_{j} \left[(\epsilon_{j,\ell})^{2} \ln \frac{(\epsilon_{j,\ell})^{2}}{\mu^{2}} - (\epsilon_{j,\ell})^{2} + m^{2} \right] \right\}$$

integration before summation!

\star interface formalism (energy per unit length)

- start from energy momentum tensor in field theory
- integrate over momentum of translationally invariant subspace
- dimensional regularization for associated UV divergence (*)
- scattering problem in orthogonal two–dim. subspace
- cancel divergence (*) by sum rules for scattering data generalization to Levison's theorem

$$E_{\delta}^{(N)} = \frac{1}{4\pi} \sum_{\ell} \left\{ D_{\ell} \int_{0}^{\infty} \frac{dk}{\pi} \left[\omega_{k}^{2} \ln \left(\frac{\omega_{k}^{2}}{\mu^{2}} \right) - k^{2} \right] \frac{d}{dk} [\delta_{\ell}(k)]_{N} + \sum_{j} \left[(\epsilon_{j,\ell})^{2} \ln \frac{(\epsilon_{j,\ell})^{2}}{\mu^{2}} - (\epsilon_{j,\ell})^{2} + m^{2} \right] \right\}$$

• exchange of sum and integral only possible after rotating to imaginary momentum axis, t = ik.

 \star interface formalism (energy per unit length)

$$E_{\delta}^{(\mathbf{N})} = \frac{1}{4\pi} \sum_{\ell} \left\{ D_{\ell} \int_{0}^{\infty} \frac{dk}{\pi} \left[\omega_{k}^{2} \ln \left(\frac{\omega_{k}^{2}}{\mu^{2}} \right) - k^{2} \right] \frac{d}{dk} \left[\delta_{\ell}(k) \right]_{\mathbf{N}} + \sum_{j} \left[(\epsilon_{j,\ell})^{2} \ln \frac{(\epsilon_{j,\ell})^{2}}{\mu^{2}} - (\epsilon_{j,\ell})^{2} + m^{2} \right] \right\}$$

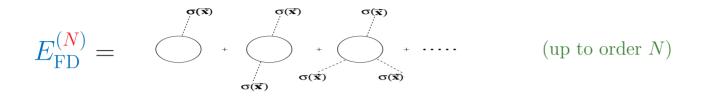
• δ_{ℓ} : total phase shift in (angular momentum) channel ℓ

(phase of detS)

- $\omega_k = \sqrt{k^2 + m^2}$: energy of continuum mode
- D_{ℓ} : degeneracy in (angular momentum) channel ℓ
- N: number of Born subtractions to render integral finite
- $\epsilon_{j,\ell}$: bound state energies
- μ : redundant renormalization scale

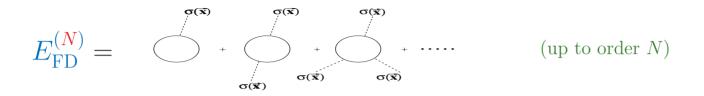
(sum rules for scattering data)

 \star Feynman diagrams (add back in subtractions)



• σ : background potential induced by string

 \star Feynman diagrams (add back in subtractions)



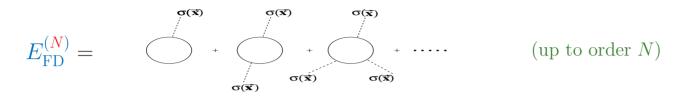
• σ : background potential induced by string

 \star counterterms

$$E_{\rm CT} = \sum_{i} c_i E^{(i)}[\sigma]$$

- c_i : counterterm coefficients computed from renormalization condition in the perturbative sector
- $E^{(i)}$: local (gauge invariant) energy functionals from the classical theory

 \star Feynman diagrams (add back in subtractions)



- σ : background potential induced by string
- \star counterterms

$$E_{\rm CT} = \sum_{i} c_i E^{(i)}[\sigma]$$

- c_i : counterterm coefficients computed from renormalization condition in the perturbative sector
- $E^{(i)}$: local (gauge invariant) energy functionals from the classical theory

 \star total vacuum energy

$$E_{\rm vac} = E_{\delta}^{(N)} + E_{\rm FD}^{(N)} + E_{\rm CT}$$

III) Fermions in String Background

 \star fermions dominate vacuum energy at large N_c \star pure gauge at spatial infinity

 $U = P_L \exp\left(i\hat{n} \cdot \vec{\tau}\xi_1\right) + P_R \quad \text{with} \quad \hat{n} = \begin{pmatrix} \cos(n\varphi) \\ -\sin(n\varphi) \\ 0 \end{pmatrix}$ so that $g\vec{W} \sim U^{\dagger}\nabla U \quad \text{and} \quad \Phi \sim U\Phi_0$ \star pure gauge at spatial infinity

$$U = P_L \exp\left(i\hat{n} \cdot \vec{\tau}\xi_1\right) + P_R \quad \text{with} \quad \hat{n} = \begin{pmatrix} \cos(n\varphi) \\ -\sin(n\varphi) \\ 0 \end{pmatrix}$$

so that $g\vec{W} \sim U^{\dagger}\nabla U \quad \text{and} \quad \Phi \sim U\Phi_0$

 $\star \, H \, \longrightarrow \, U^{\dagger} H U$

is not an option, because of $1/\rho^2$ singularity at the center (no analytic continuation of scattering data)

 \star pure gauge at spatial infinity

$$U = P_L \exp\left(i\hat{n} \cdot \vec{\tau}\xi_1\right) + P_R \quad \text{with} \quad \hat{n} = \begin{pmatrix} \cos(n\varphi) \\ -\sin(n\varphi) \\ 0 \end{pmatrix}$$

so that $g\vec{W} \sim U^{\dagger}\nabla U \quad \text{and} \quad \Phi \sim U\Phi_0$

 $\star \ H \ \longrightarrow \ U^{\dagger} H U$

is not an option, because of $1/\rho^2$ singularity at the center (no analytic continuation of scattering data)

 \star return string at spatial infinity (as for QED flux tubes)

- numerically very costly
- proof–of–principle calculation:

vacuum polarization energy small in $\overline{\text{MS}}$.

 \star major differences to QED flux tubes:

• gauge transformation that unwinds the string is unique:

 $U(\varphi) = U(\varphi + 2\pi)$

even though there are fractional fluxes

• no constraint on closed flux lines

- \star major differences to QED flux tubes:
 - gauge transformation that unwinds the string is unique:

 $U(\varphi) = U(\varphi + 2\pi)$

even though there are fractional fluxes

• no constraint on closed flux lines

 \star radially dependent gauge transformation

 $H \longrightarrow U^{\dagger}(\rho, \varphi) H U(\rho, \varphi)$

with

$$U(\rho,\varphi) = P_L \exp\left(i\hat{n} \cdot \vec{\tau}\,\xi(\rho)\right) + P_R$$

 \star well defined problem for $\xi(0) = 0$ and $\xi(\infty) = \xi_1$.

 \star major difference to QED flux tubes:

gauge transformation that unwinds the string is unique:

 $U(\varphi) = U(\varphi + 2\pi)$

even though there are fractional fluxes.

- no constraint on closed flux lines
- \star radially dependent gauge transformation

 $H \quad \longrightarrow \quad U^{\dagger}(\rho,\varphi) \, H \, U(\rho,\varphi)$

with

$$U(\rho,\varphi) = P_L \exp\left(i\hat{n} \cdot \vec{\tau}\,\xi(\rho)\right) + P_R$$

 \star well defined problem for $\xi(0) = 0$ and $\xi(\infty) = \xi_1$.

 \star local gauge invariance: specific shape of ξ irrelevant

 \longrightarrow further support for phase shift method

 \star field parameterization

$$f_H(\rho) = 1 - e^{-\frac{\rho}{w_H}}$$
$$f_G(\rho) = 1 - e^{-\left(\frac{\rho}{w_G}\right)^2}$$
$$\xi(\rho) = \xi_1 \left[1 - e^{-\left(\frac{\rho}{w_\xi}\right)^2}\right]$$

- w_H , w_G , ξ_1 : variational parameters for physical string
- w_{ξ} : gauge parameter, not measurable
- similarly, the scale parameter for the fake boson field is not measurable (technicality to simplify 3rd and 4th order FDs)

 \star data in $\overline{\text{MS}}$ scheme (scale set by fermion mass)

w_{ξ}	$E_{\rm FD}$	E_{δ}	$E_{ m B}$	$E_{ m vac}$	
0.5	-0.2515	0.3489	0.0046	0.1020	
1.0	-0.0655	0.1606	0.0032	0.0983	$w_H = 2.0$
2.0	-0.0358	0.1294	0.0038	0.0974	$w_G = 2.0$
3.0	-0.0320	0.1235	0.0056	0.0971	$\xi_1 = 0.4\pi$
4.0	-0.0302	0.1193	0.0080	0.0971	

- $\bullet~E_{\rm FD}$ renormalized first and second order Feynman diagram
- E_{δ} phase shift contribution, first and second Born order removed
 - \ast computed by analytic continuation
 - \ast log. div. of 3rd and 4th order by a fake field
 - \ast numerically very costly
 - * about $1 \dots 2\%$ numerical error
- $E_{\rm B}$ remnant of fake field

 \star data in $\overline{\text{MS}}$ scheme (scale set by fermion mass)

	$E_{\rm FD}$				
0.5	-0.2515	0.3489	0.0046	0.1020	
1.0	-0.0655	0.1606	0.0032	0.0983	$w_H = 2.0$
2.0	-0.0358	0.1294	0.0038	0.0974	$w_G = 2.0$
3.0	-0.0320	0.1235	0.0056	0.0971	$\xi_1 = 0.4\pi$
4.0	-0.0302	0.1193	0.0080	0.0971	

- $\bullet~E_{\rm FD}$ renormalized first and second order Feynman diagram
- $\bullet~E_{\delta}$ phase shift contribution, first and second Born order removed
- $E_{\rm B}$ remnant of fake field

gauge invariance verified within numerical accuracy

 \star data in $\overline{\text{MS}}$ scheme (scale set by fermion mass)

w_{ξ}	$E_{\rm FD}$	E_{δ}	$E_{ m B}$	$E_{\rm vac}$	
0.5	-0.2515	0.3489	0.0046	0.1020	
1.0	-0.0655	0.1606	0.0032	0.0983	$w_H = 2.0$
2.0	-0.0358	0.1294	0.0038	0.0974	$w_G = 2.0$
3.0	-0.0320	0.1235	0.0056	0.0971	$\xi_1 = 0.4\pi$
4.0	-0.0302	0.1193	0.0080	0.0971	

- $\bullet~E_{\rm FD}$ renormalized first and second order Feynman diagram
- $\bullet~E_{\delta}$ phase shift contribution, first and second Born order removed
- $E_{\rm B}$ remnant of fake field

gauge invariance verified within numerical accuracy

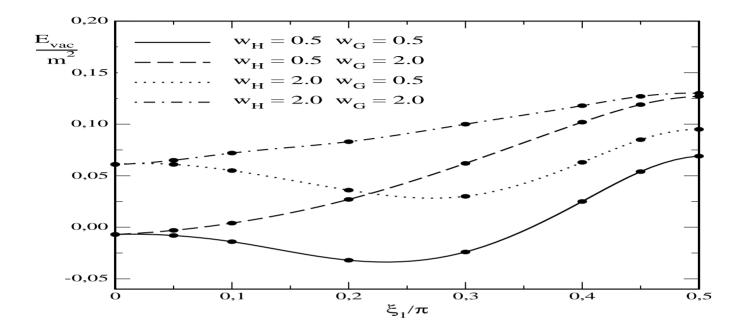
spectral methods to compute vacuum energies verified

 \star on–shell scheme for $E_{\rm CT}$

add (maximally four) finite local and gauge-invariant counterterms:

- no-tadpole interaction
- Higgs mass unchanged
- normalization of Higgs particle unchanged
- normalization of vector meson unchanged
- vector meson mass will be a prediction,
 - \longrightarrow tune gauge coupling to reproduce M_W

\star results in on–shell scheme



- finite counterterm contribution adds positively
- quantum effects provide some binding for thin strings (Landau ghost ?)
- competitive with classical mass only for
 - (i) fermion masses about 1TeV
 - (ii) many internal degrees of freedom (color)

- \star total energy: $E = E_{\rm cl} + 3E_{\rm vac}$ $(N_C = 3)$
- \star classical contribution:

$$\frac{E_{\rm cl}}{m^2} = 2\pi \int_0^\infty \rho d\rho \left\{ n^2 \sin^2 \xi_1 \left[\frac{2}{g^2} \left(\frac{f'_G}{\rho} \right)^2 + \frac{f_H^2}{f^2 \rho^2} \left(1 - f_G \right)^2 \right] + \frac{f'_H^2}{f^2} + \frac{\mu_h^2}{4f^2} \left(1 - f_H^2 \right)^2 \right\}$$

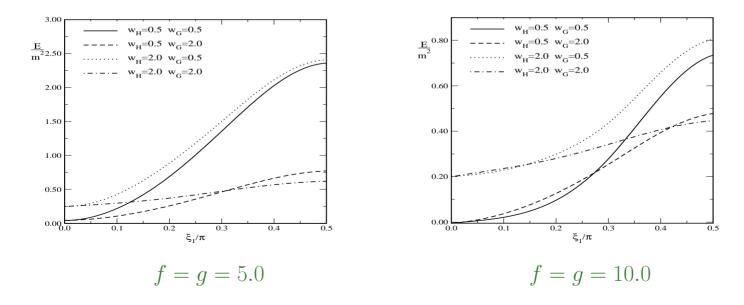
(quantities under the integral are scaled to be dimensionless, $\mu_h = \frac{m_H}{vf}$)

* total energy: $E = E_{cl} + 3E_{vac}$ $(N_C = 3)$

 \star classical contribution:

$$\frac{E_{\rm cl}}{m^2} = 2\pi \int_0^\infty \rho d\rho \left\{ n^2 \sin^2 \xi_1 \left[\frac{2}{g^2} \left(\frac{f_G'}{\rho} \right)^2 + \frac{f_H^2}{f^2 \rho^2} \left(1 - f_G \right)^2 \right] + \frac{f_H'^2}{f^2} + \frac{\mu_h^2}{4f^2} \left(1 - f_H^2 \right)^2 \right\}$$

\star numerical results:



IV) Charged Cosmic Strings

 \star Cosmic strings induce fermionic bound state levels: $\epsilon_i < m$

- ϵ_i eigenvalues of two–dimensional Hamiltonian
- for $\xi_1 = \pi/2$ an exact zero mode exists
- for wide strings, $w_{\rm H} \gtrsim 4$ many levels emerge (100)

 \star bound states carry longitudinal momenta:

$$E_i(p_n) = \sqrt{\epsilon_i^2 + p_n^2} \qquad p_n = \frac{n\pi}{L}$$
 (length of the string)

 \star populating these levels may form a charged string with energy less than equally many free fermions

* binding energy is of same order as E_{vac} , both in N_{C} and \hbar . * require leading contribution to the total energy as $L \to \infty$

$$\sum_{n} \longrightarrow \frac{L}{\pi} \int dp$$

 \star search for the minimum of bound state contribution

- introduce chemical potential $\mu \leq m$
- populate all levels with $E_i(p) \le \mu$
- Fermi momentum for each populated level $p_i^F(\mu) = \sqrt{\mu^2 \epsilon_i^2}$ (states with $\epsilon_i > \mu$ are not populated)

 \star charge density (per unit length)

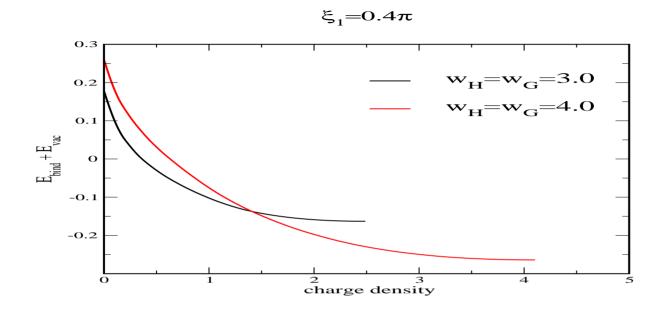
$$Q(\mu) = \sum_{i} \frac{p_i^F(\mu)}{\pi}$$

monotonously rising, can be inverted

$$\mu = \mu(Q) \qquad \text{and} \qquad p_i^F = p_i^F(Q)$$

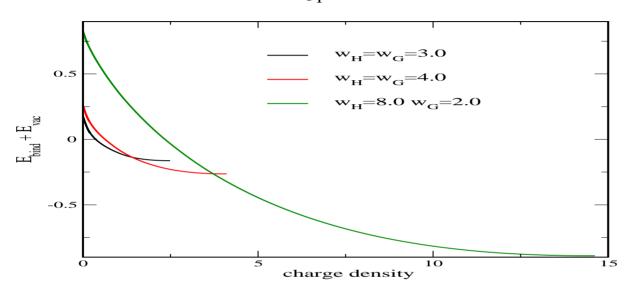
 \star binding energy (density) at prescribed charge (density)

$$E_{\text{bind}}(Q) = \frac{1}{\pi} \sum_{i} \int_{0}^{p_{i}^{F}(Q)} dp \left[\sqrt{\epsilon_{i}^{2} + p^{2}} - m \right] \qquad \left(\begin{array}{c} \text{relative to} \\ \text{free fermions} \end{array} \right)$$

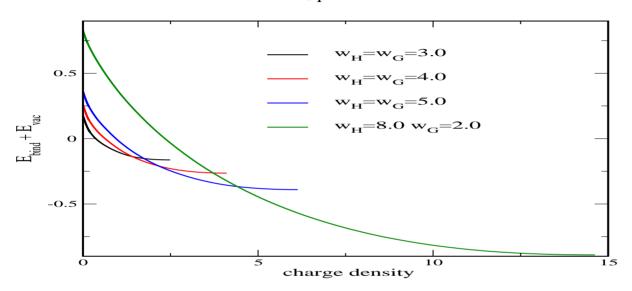


- endpoint: all available levels populated
- small charge: narrow string preferred
- large charge: wide string preferred

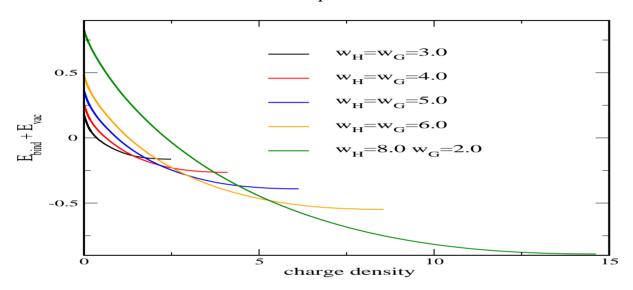
\star adding more configurations



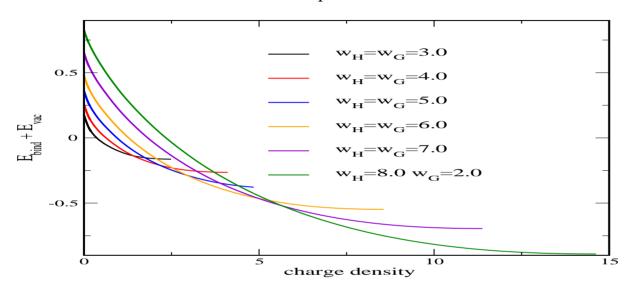
 $\xi_1 = 0.4\pi$



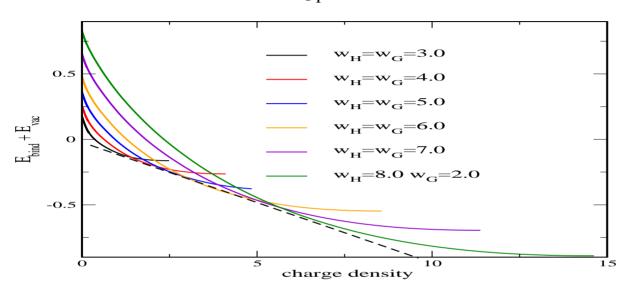
 $\xi_1 = 0.4\pi$



 $\xi_1 = 0.4\pi$



 $\xi_1 = 0.4\pi$

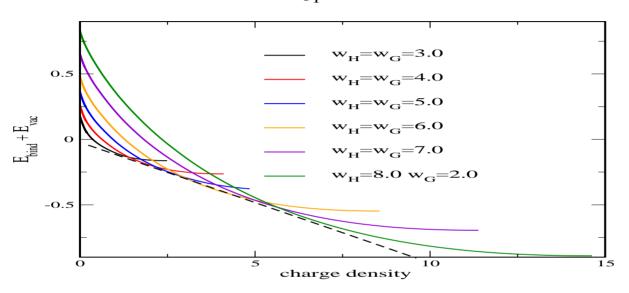


 $\xi_1 = 0.4\pi$

• delicate balance between E_{vac} and ϵ_i :

 $\min\left(E_{\rm bind} + E_{\rm vac}\right) \propto Q$

- strong variation with w_H
- essentially independent of w_G and ξ_1



 $\xi_1 = 0.4\pi$

• delicate balance between E_{vac} and ϵ_i :

 $\min\left(E_{\rm bind} + E_{\rm vac}\right) \propto Q$

- strong variation with w_H
- essentially independent of w_G and ξ_1

 \star identify configurations along the envelope to compute associated $E_{\rm cl}$

- \star about $m = 1, \ldots, 500$ configurations for which E_{vac} and ϵ_i have been calculated
- \star prescribe Q and compute

$$E_{\rm tot}^{(m)}(Q) = E_{\rm cl}^{(m)} + N_C \left[E_{\rm vac}^{(m)} + E_{\rm bind}^{(m)}(Q) \right]$$

 \star find minimum by scanning through m

- \star about $m = 1, \ldots, 500$ configurations for which E_{vac} and ϵ_i have been calculated
- \star prescribe Q and compute

$$E_{\rm tot}^{(m)}(Q) = E_{\rm cl}^{(m)} + N_C \left[E_{\rm vac}^{(m)} + E_{\rm bind}^{(m)}(Q) \right]$$

- \star find minimum by scanning through m
- \star equivalent to self–consistent solution if $\mbox{ }\{m\}$ covered configuration space completely

- \star about $m = 1, \ldots, 500$ configurations for which E_{vac} and ϵ_i have been calculated
- \star prescribe Q and compute

$$E_{\rm tot}^{(m)}(Q) = E_{\rm cl}^{(m)} + N_C \left[E_{\rm vac}^{(m)} + E_{\rm bind}^{(m)}(Q) \right]$$

- \star find minimum by scanning through m
- \star equivalent to self–consistent solution if $\mbox{ }\{m\}$ covered configuration space completely
- * stable configuration if $\min_m \left[E_{\text{tot}}^{(m)}(Q) \right] < 0$ (true minimum can only be lower)

- \star about $m = 1, \ldots, 500$ configurations for which E_{vac} and ϵ_i have been calculated
- \star prescribe Q and compute

$$E_{\rm tot}^{(m)}(Q) = E_{\rm cl}^{(m)} + N_C \left[E_{\rm vac}^{(m)} + E_{\rm bind}^{(m)}(Q) \right]$$

 \star find minimum by scanning through m

- \star equivalent to self–consistent solution if $\mbox{ }\{m\}$ covered configuration space completely
- * stable configuration if $\min_m \left[E_{\text{tot}}^{(m)}(Q) \right] < 0$ (true minimum can only be lower)

 \star negative search for physically motivated parameters (top–quark)

v = 177 GeV, g = 0.72, f = 0.99, $m_{\text{H}} = 140 \text{GeV}$ because of large $E_{\text{cl}}^{(m)}$

- \star about m = 1, ..., 500 configurations for which E_{vac} and ϵ_i have been calculated
- \star prescribe Q and compute

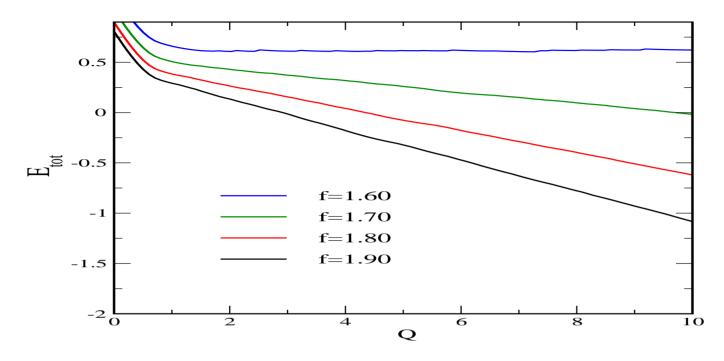
$$E_{\text{tot}}^{(m)}(Q) = E_{\text{cl}}^{(m)} + N_C \left[E_{\text{vac}}^{(m)} + E_{\text{bind}}^{(m)}(Q) \right]$$

- \star find minimum by scanning through m
- * stable configuration if $\min_m \left[E_{\text{tot}}^{(m)}(Q) \right] < 0$
- \star equivalent to self–consistent solution if $\{m\}$ covered configuration space completely

 \star negative search for physically motivated parameters (top-quark)

 $v = 177 {\rm GeV}\,, \qquad g = 0.72\,, \qquad f = 0.99\,, \qquad m_{\rm H} = 140 {\rm GeV}$ because of large $E_{\rm cl}^{(m)}$

 \star but: $E_{\rm cl}^{(m)}$ decreases rapidly with increasing f



 \star stable configurations for $f \gtrsim 1.7$

- \star safe against Landau ghost problems (widths parameters large)
- \star stable strings should emerge if a strongly interacting fermion doublet with twice the top quark mass existed
- * stable configurations have $\xi_1 \approx 0$ (since we keep g small)

\star total mass

- \bullet small to moderate binding: $M\approx LQm$
- typical charge (density) for binding: $Q\approx 5m$
- typical fermion mass at binding: $m \approx 300 \text{GeV}$
- cosmological scale: $L \approx R_{\odot}$

 $M \approx 10^{-20} M_{\odot}$

• too light to have cosmological impact

 $\begin{array}{ll} \star \mbox{ motivation:} & \mbox{interesting configurations in many field theories} \\ & \mbox{classically unstable (in standard model)} \\ & \mbox{ same } \mathcal{O}(\hbar) \mbox{ as bound state energy} \end{array}$

* motivation: interesting configurations in many field theories classically unstable (in standard model) same $\mathcal{O}(\hbar)$ as bound state energy

★ problem: non-trivial structure at spatial infinity (no FDs, no scattering problem)

* motivation: interesting configurations in many field theories classically unstable (in standard model) same $\mathcal{O}(\hbar)$ as bound state energy

 ★ problem: non-trivial structure at spatial infinity (no FDs, no scattering problem)

 \star solution: subset of <u>local</u> gauge transformations

* motivation: interesting configurations in many field theories classically unstable (in standard model) same $\mathcal{O}(\hbar)$ as bound state energy

 ★ problem: non-trivial structure at spatial infinity (no FDs, no scattering problem)

 \star solution: subset of <u>local</u> gauge transformations

 \star condition: invariance within this subset further support for phase shift method \star results:

• small (tiny) E_{vac} for standard model parameters fermion mass $\mathcal{O}(1\text{TeV})$ needed to compete with E_{cl} (not safe against Landau ghost)

- \star results:
- small (tiny) E_{vac} for standard model parameters fermion mass $\mathcal{O}(1\text{TeV})$ needed to compete with E_{cl} (not safe against Landau ghost)
- populating bound states \implies charged cosmic string (systematic \hbar expansion: $E_{\text{vac}} \sim E_{\text{bind}}$)

- \star results:
- small (tiny) E_{vac} for standard model parameters fermion mass $\mathcal{O}(1\text{TeV})$ needed to compete with E_{cl} (not safe against Landau ghost)
- populating bound states \implies charged cosmic string (systematic \hbar expansion: $E_{\text{vac}} \sim E_{\text{bind}}$)
- charged cosmic strings stable if strongly interacting fermion (doublet) with mass of 300MeV exists (no Landau ghost problem)

- \star results:
- small (tiny) E_{vac} for standard model parameters fermion mass $\mathcal{O}(1\text{TeV})$ needed to compete with E_{cl} (not safe against Landau ghost)
- populating bound states \implies charged cosmic string (systematic \hbar expansion: $E_{\text{vac}} \sim E_{\text{bind}}$)
- charged cosmic strings stable if strongly interacting fermion (doublet) with mass of 300MeV exists (no Landau ghost problem)
- critical charge density quickly decreases as fermion mass is further increased

- \star results:
- small (tiny) E_{vac} for standard model parameters fermion mass $\mathcal{O}(1\text{TeV})$ needed to compete with E_{cl} (not safe against Landau ghost)
- populating bound states \implies charged cosmic string (systematic \hbar expansion: $E_{\text{vac}} \sim E_{\text{bind}}$)
- charged cosmic strings stable if strongly interacting fermion (doublet) with mass of 300MeV exists (no Landau ghost problem)
- critical charge density quickly decreases as fermion mass is further increased
- stationary configuration is Higgs dominated

- \star results:
- small (tiny) E_{vac} for standard model parameters fermion mass $\mathcal{O}(1\text{TeV})$ needed to compete with E_{cl} (not safe against Landau ghost)
- populating bound states \implies charged cosmic string (systematic \hbar expansion: $E_{\text{vac}} \sim E_{\text{bind}}$)
- charged cosmic strings stable if strongly interacting fermion (doublet) with mass of 300MeV exists (no Landau ghost problem)
- critical charge density quickly decreases as fermion mass is further increased
- stationary configuration is Higgs dominated
- \star future work: boson loops
 - currents along the string
 - closed strings