QUANTUM FIELD THEORY in GRAPHENE Dmitri Vassilevich Universidade Federal do ABC, Brazil

QFEXT 2011

Supported: CNPq, FAPESP

Contents:

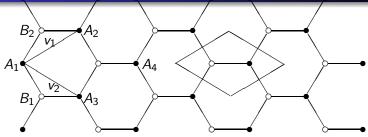
- The Dirac Model
- The polarization tensor

æ

Results

The Dirac model for graphene was proposed in 1984 by G. Semenoff and by DiVincenzo and Mele — 20 years before the experimental discovery of graphene by Geim, Novoselov and others! The Dirac model can be derived from the Tight binding model. Graphene is a one-atom-thick (planar) system with a hexagonal lattice:

Tight binding model



$$H = -t \sum_{lpha \in \mathcal{A}} \sum_{i=1}^{3} (a^{\dagger}(\mathbf{r}_{lpha})b(\mathbf{r}_{lpha} + \mathbf{u}_{i}) + b^{\dagger}(\mathbf{r}_{lpha} + \mathbf{u}_{i})a(\mathbf{r}_{lpha})),$$

Eigenvectors (numbered by the momentum \mathbf{k})

$$|\psi
angle = C_{A\!\sum_{lpha\in A}} e^{i\mathbf{k}\mathbf{r}_{lpha}} a^{\dagger}(\mathbf{r}_{lpha})|0
angle + C_{B\!\sum_{lpha\in B}} e^{i\mathbf{k}\mathbf{r}_{lpha}} b^{\dagger}(\mathbf{r}_{lpha})|0
angle.$$

Eigenvalues:

$$E = \pm t \sqrt{1 + 4\cos(\frac{\sqrt{3}}{2}k_y d)[\cos(\frac{3}{2}k_x d) + \cos(\frac{\sqrt{3}}{2}k_y d)]}.$$

(with d being the lattice spacing).

Spectrum: two surfaces, E > 0 and E < 0, which touch each other at 6 Fermi points where E = 0. Among these 6 points only two are inequivalent:

$$K_{\pm} = \left(0, \pm 4\pi/(3\sqrt{3}d)\right)$$

Next: take each one of these Fermi points, expand in momenta in the limit $d \rightarrow 0$:

$$H_{\pm} = \frac{3}{2} t d \left(\begin{array}{cc} 0 & i q_x \pm q_y \\ -i q_x \pm q_y & 0 \end{array} \right) = v_F (-q_x \sigma_2 \pm q_y \sigma_1),$$

where $v_F \simeq 1/300$ is the Fermi velocity. Summing up two Fermi point contributions:

$$H = -iv_{F}(\gamma^{x}\partial_{x} + \gamma^{y}\partial_{y}), \quad \gamma^{x} = \begin{pmatrix} -\sigma_{2} & 0 \\ 0 & -\sigma_{2} \end{pmatrix}, \quad \gamma^{y} = \begin{pmatrix} \sigma_{1} & 0 \\ 0 & -\sigma_{1} \end{pmatrix}$$

This is the Dirac Hamiltonian. Taking into account spin variables makes the spinors 8-component.

Generalizations:

– Add an electromagnetic field by $\partial \rightarrow \partial + ieA$, that can be (i) an external electromagnetic radiation, (b) an external magnetic field, (ii) a fluctuating electromagnetic field.

- Add a temperature.
- Add a chemical potential and a mass.
- Impurities.

The Dirac model is expected to be valid up to the energies \sim 2eV. "Characteristic" energies of (most) current experiments are of order of fractions of eV (or less).

QFT with planar fermions:

in 1980's: Appelquist, Chodos, Semenoff, Niemi, Reddlich, Jackiw, Deser,

in XXI Century: Gusynin, Sharapov, Miransky, Gorbar, Shovkovy, Pyatkovskiy, Khveshchenko,....

The most relevant quantity one can calculate here by the QFT methods is the polarization tensor Π defined through the effective action for planar fermions in the presence of an external magnetic field:

$$S_{\text{eff}}(A) = A \bigvee A$$
$$= \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} A_j(p) \Pi^{jl}(p) A_l(p).$$

Example: two-component massive fermions.

$$\Pi^{mn} = \frac{\alpha}{v_F^2} \eta_j^m \left[\Psi(\tilde{p}) \left(g^{jl} - \frac{\tilde{p}^j \tilde{p}^l}{\tilde{p}^2} \right) + i\phi(\tilde{p}) \epsilon^{jkl} \tilde{p}_k \right] \eta_l^n$$

æ

▲ 문 ▶ ▲ 문 ▶ …

where $\eta = \text{diag}(1, v_F, v_F)$, $\tilde{p}^m \equiv \eta_n^m p^n$.

Suppose, the graphene sample is flat, occupying the plane $x^3 = a$. The effective equations of motion for the electromagnetic field read

$$\partial_{\mu}F^{\mu\nu} + \delta(x^{3} - a)\Pi^{\nu\rho}A_{\rho} = 0,$$

which is equivalent to a free propagation of light outside the surface and the matching conditions on the surface

$$\begin{aligned} A_{\mu}|_{x^{3}=a+0} &= A_{\mu}|_{x^{3}=a-0}, \\ (\partial_{3}A_{\mu})|_{x^{3}=a+0} &- (\partial_{3}A_{\mu})|_{x^{3}=a-0} = \Pi_{\mu}^{\ \nu}A_{\nu}|_{x^{3}=a}. \end{aligned}$$

(Here $\Pi^{3\mu} = 0$)

External conditions: a strong magnetic field (1 - 10 Tesla)perpendicular to the surface of graphene; varying chemical potential μ controlled by the gate potential; zero temperature. Quantity of interest: zero-frequency off-diagonal real part of the polarization tensor (=dc Hall conductivity). Calculations: Beneventano, Santangelo, Big success of the Dirac model: prediction/explanation of the anomalous Hall conductivity in graphene:

$$\sigma_{xy} \sim (n+rac{1}{2})$$

(that is observed on experiment).

Still to be done:

- role of the phase of quantum determinant;
- more sophisticated external conditions.

<u>Setup</u>: absorption of light by suspended graphene, no magnetic field, arbitrary temperature, arbitrary, but small mass in and μ . <u>Quantity of interest</u>: imaginary part of the diagonal polarization tensor at non-zero frequencies.

<u>Theory</u>: universal absorption rate of about 2% – Enormous! <u>Experiment</u>: Nair et al (2008); Kuzmenko et al (2008) - wonderful confirmation. <u>Setup</u>: Polarization rotation of EM radiation passing through graphene in a strong external magnetic field perpendicular to the surface of graphene.

<u>On the Dirac model side</u>: polarization tensor for non-zero frequencies, external magnetic field, and impurities (!). Fortunately, at zero temperature.

<u>General theoretical discussion</u>: Volkov & Mikhailov (1985); Fialkovsky & D.V. (2009) ...

Experiment: Kuzmenko (2010): Giant Faraday rotation in graphene. (up to 0,1 rad!).

IF & DV (2011): Dirac model is in an agreement with the experiment. It also predicts other peaks at different frequencies. The Faraday effect instrumental for measuring parameters of the Dirac model.

Setup: Graphene layer parallel to another

graphene/metal/dielectric. No magnetic field, but other parameters are variable.

<u>Dirac model</u> – gives the polarization tensor which defines reflection coefficients to be substituted in the Lifshitz formula.

Most spectacular prediction: temperature enhancement of the Casimir interaction (Fialkovsky, Marachevsky and DV (2011); in agreement with Gomez-Santos (2009)).

Experiment: NO EXPERIMENT.

The Dirac model of graphene

- has solid theoretical grounds
- confirmed by experiments whenever tested
- deserves more attention from both theoretical and experimental sides