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The Dirac Model

The Dirac model for graphene was proposed in 1984 by
G. Semenoff and by DiVincenzo and Mele — 20 years before the
experimental discovery of graphene by Geim, Novoselov and others!
The Dirac model can be derived from the Tight binding model.
Graphene is a one-atom-thick (planar) system with a hexagonal
lattice:



Tight binding model
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H = −t
∑

α∈A

3
∑

i=1

(a†(rα)b(rα + ui ) + b†(rα + ui )a(rα)),



Eigenvectors (numbered by the momentum k)

|ψ〉 = CA

∑

α∈A

e ikrαa†(rα)|0〉+ CB

∑

α∈B

e ikrαb†(rα)|0〉.

Eigenvalues:

E = ±t

√

1 + 4 cos(

√
3

2
kyd)[cos(

3

2
kxd) + cos(

√
3

2
kyd)].

(with d being the lattice spacing).
Spectrum: two surfaces, E > 0 and E < 0, which touch each other
at 6 Fermi points where E = 0. Among these 6 points only two are
inequivalent:

K± =
(

0,±4π/(3
√

3d))



Next: take each one of these Fermi points, expand in momenta in
the limit d → 0:

H± =
3

2
td

(

0 iqx ± qy

−iqx ± qy 0

)

= vF (−qxσ2 ± qyσ1),

where vF ≃ 1/300 is the Fermi velocity. Summing up two Fermi
point contributions:

H = −ivF (γ
x∂x+γ

y∂y ), γ
x =

(

−σ2 0
0 −σ2

)

, γy =

(

σ1 0
0 −σ1

)

.

This is the Dirac Hamiltonian. Taking into account spin variables
makes the spinors 8-component.



Generalizations:
– Add an electromagnetic field by ∂ → ∂ + ieA, that can be (i) an
external electromagnetic radiation, (b) an external magnetic field,
(ii) a fluctuating electromagnetic field.
– Add a temperature.
– Add a chemical potential and a mass.
– Impurities.

The Dirac model is expected to be valid up to the energies ∼ 2eV.
“Characteristic” energies of (most) current experiments are of order
of fractions of eV (or less).



Polarization Tensor

QFT with planar fermions:
in 1980’s: Appelquist, Chodos, Semenoff, Niemi, Reddlich, Jackiw,
Deser, .....
in XXI Century: Gusynin, Sharapov, Miransky, Gorbar, Shovkovy,
Pyatkovskiy, Khveshchenko,....
The most relevant quantity one can calculate here by the QFT
methods is the polarization tensor Π defined through the effective
action for planar fermions in the presence of an external magnetic
field:



Seff(A) = A A

=
1

2

∫

d3p

(2π)3
Aj(p)Π

jl (p)Al (p).

Example: two-component massive fermions.

Πmn =
α

v2

F

ηm
j

[

Ψ(p̃)

(

g jl − p̃j p̃l

p̃2

)

+ iφ(p̃)ǫjkl p̃k

]

ηn
l

where η = diag (1, vF , vF ), p̃m ≡ ηm
n pn.



Suppose, the graphene sample is flat, occupying the plane x3 = a.
The effective equations of motion for the electromagnetic field read

∂µFµν + δ(x3 − a)ΠνρAρ = 0,

which is equivalent to a free propagation of light outside the
surface and the matching conditions on the surface

Aµ|x3=a+0 = Aµ|x3=a−0,

(∂3Aµ)|x3=a+0 − (∂3Aµ)|x3=a−0 = Π ν

µ
Aν |x3=a .

(Here Π3µ = 0)



Results: Quantum Hall Effect

External conditions: a strong magnetic field (1 − 10 Tesla)
perpendicular to the surface of graphene; varying chemical potential
µ controlled by the gate potential; zero temperature.
Quantity of interest: zero-frequency off-diagonal real part of the
polarization tensor (=dc Hall conductivity).
Calculations: Beneventano, Santangelo, ....
Big success of the Dirac model: prediction/explanation of the
anomalous Hall conductivity in graphene:

σxy ∼ (n +
1

2
)

(that is observed on experiment).



Still to be done:
– role of the phase of quantum determinant;
– more sophisticated external conditions.



Results: Optical absorption

Setup: absorption of light by suspended graphene, no magnetic
field, arbitrary temperature, arbitrary, but small mass in and µ.
Quantity of interest: imaginary part of the diagonal polarization
tensor at non-zero frequencies.
Theory: universal absorption rate of about 2% – Enormous!
Experiment: Nair et al (2008); Kuzmenko et al (2008) - wonderful
confirmation.



Results: The Faraday Effect

Setup: Polarization rotation of EM radiation passing through
graphene in a strong external magnetic field perpendicular to the
surface of graphene.
On the Dirac model side: polarization tensor for non-zero
frequencies, external magnetic field, and impurities (!). Fortunately,
at zero temperature.
General theoretical discussion: Volkov & Mikhailov (1985);
Fialkovsky & D.V. (2009) ...
Experiment: Kuzmenko (2010): Giant Faraday rotation in
graphene. (up to 0,1 rad!).
IF & DV (2011): Dirac model is in an agreement with the
experiment. It also predicts other peaks at different frequencies.
The Faraday effect instrumental for measuring parameters of the
Dirac model.



Results: The Casimir Effect

Setup: Graphene layer parallel to another
graphene/metal/dielectric. No magnetic field, but other parameters
are variable.
Dirac model – gives the polarization tensor which defines reflection
coefficients to be substituted in the Lifshitz formula.
Most spectacular prediction: temperature enhancement of the
Casimir interaction (Fialkovsky, Marachevsky and DV (2011); in
agreement with Gomez-Santos (2009)).
Experiment: NO EXPERIMENT.



Conclusions

The Dirac model of graphene

has solid theoretical grounds

confirmed by experiments whenever tested

deserves more attention from both theoretical and
experimental sides


