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Abstract

In the van der Waals regime (neglecting relativity and retardation), we find
the power P generated by friction between two Drude-modelled dissipative half-
spaces, at fixed separation and relative speed u, admitting only low u and low
temperatures. This requires only elementary quantum mechanics; but the results
can serve as partial checks on calculations in the fully retarded Casimir regime.
They also raise questions regarding (i) the frequency-distribution of P; (ii) the
status of predictions about Casimir forces generally, insofar as they feature para-
meters like conductivities with their empirical temperature-dependence; and (iii)
calculations of heat transfer, insofar as they assume fluctuations in the two bodies
to be uncorrelated.



1. Introduction and preview

Since this is not a research paper but a workshop talk, the reader is asked to take
most technicalities on trust: they are spelled out elsewhere (Barton 2011, cited as
as JPC). At this stage, the writer’s own interest is focussed mainly on the open
questions outlined in section 5 here.

We consider friction between two parallel Drude-modelled half-spaces, call
them L,R, with response functions

ε(ω) = 1 +
ω2pl

ω20 − ω2 − iωΓ
. (1.1)

We shall choose a Hamiltonian that reproduces ε: in this sense ε is not input but
output. The interaction V between the half-spaces depends only on their surface
plasmons: bulk plasmons generate no exterior fields, whence we ignore them.
The simple nondissipative (nd) model, with Γ = 0 from the start, yields the same
results as the nondissipative limit Γ→ 0. Thus it can serve as a check; moreover
there are simple rules, on which we shall lean heavily, for obtaining certain crucial
dissipative from the corresponding nondissipative expressions.

The frequency ωS of surface plasmons on a single nondissipative half-space,
convenient dimensionless parameters β and γ, and the Ohmic conductivity σ̄, are
given by

ωS =

√

ω20 +
ω2pl
2

, β2 ≡
ω2pl
2ω2S

≤ 1, γ ≡ Γ

ωS
=

β2ωS
2πσ̄

. (1.2)

In metals, γ � 1 is typically 10−3 to 10−2.
The separation ζ is in the z direction, and fixed; and the relative velocity

u =ux̂ is constrained, eventually to constant u, by an externally applied force
counteracting the friction. Position coordinates are written as r = (s, z), with s =
(s1, s2). The half-spaces are taken to be displaced from their reference positions
at time zero through

σL,R = ∓σ/2=∓ x̂σ/2, σR − σL ≡ σ = ut = (u, 0, 0) t. (1.3)

Let F = −F x̂ be the frictional resistance and P = uF the frictionally gen-
erated power per unit area. Our aim is to calculate P subject to two highly
simplifying restrictions:

(i) We examine only the van der Waals (vdW) regime, shorthand for the
nonrelativistic/nonretarded approximation

u/c� 1, ζ � c/ωS, ζ � c�/kBT, but ζ � (aB ≡ Bohr radius), (1.4)
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where there are only instantaneous Coulomb forces, but no Maxwell equations, no
QED, and no photons. Often this regime is identified by taking the formal limit
c→∞.

(ii) We consider only low u and low initial temperatures Ti, in the sense that

v ≡ u/ζωS � 1, τ ≡ kBT/�ωS � 1, B ≡ 1/τ � 1. (1.5)

Typically, �ωS is of the order of atomic ionization energies, whence τ � 1 would
entail very disturbed solids; while ζ � aB ensures that v � 1 for u not larger
than the atomic unit 	 c/137. We shall treat v and τ as comparable, and focus
on the asymptotics. Note that τ/v = kBTζ/�u does not depend on the properties
of the material.

It is of the essence that, given these restrictions, we need and shall use only
textbook-level NR quantum mechanics with simple Hamiltonians, to the exclu-
sion of Lifshitz-derived formulae and of Maxwell stress-tensors. (To accommodate
nonzero Γ, section 4 below will adopt a nonretarded version of the now-standard
Huttner-Barnett theory.) The results can serve as partial checks on fully retarded
Casimir-regime calculations. The point is that most (though not all) such theories
proceed from assumptions which under nonretarded conditions are satisfied by our
model: therefore in the vdW limit their results must reduce to ours , irrespective
of any interest one might take in our model for its own sake. For instance, the
rather elaborate recent controversy, insofar as it turned on the mere existence of
P , might have been resolved simply by observing that the vdW limit is manifestly
nonzero; JPC cites other examples where candidate theories fail the vdW test on
sight, even though the reasons for the failure of the supposedly general expressions
are well hidden from view.

The Hamiltonian reads

H0 = HL + HR, H = H0 + V. (1.6)

Unfortunately V cannot be treated perturbatively: for instance, the attractive
and the frictional forces calculated only to order V 2 turn out to be wrong by 10%
and 20% respectively.

The rest of this paper is organized as follows. We start, in section 2, with
nondissipative ε (ie γ = 0) and zero temperature (ie τ = 0), which allows mo-
tion to be introduced as simply as possible. Section 3 admits nonzero γ, which
complicates the analysis but introduces no new points of principle. Section 4
then outlines the truly interesting scenario with v and τ both nonzero (though
small). The final section 5 makes some general comments, and voices some re-
lated questions that to the writer’s knowledge are open, and largely unaddressed.
They concern the frequency-distribution of the frictionally generated energy, heat
exchange between stationary half-spaces, and the applicability of predictions fea-
turing temperature-dependent γ.
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2. Nondissative system at zero temperature: γ = 0 = τ

The potentials Φ and surface-charge densities Σ due to each half-space on its own
are

(ΦL,R)nd = −β

∫
d2k

√
�ωS
4πk

(aL,R)k exp [ik · (s± σ/2)− k |z ± ζ/2|]+Hc, (2.1)

(ΣL,R)nd = − β

2π

∫
d2k

√
�ωSk

4π
(aL,R)k exp[ik · (s± σ/2)] + Hc. (2.2)

Hc stands for Hermitean conjugate. The a and a+ are the annihilation and
creation operators for surface plasmons:

[
aLk, a

+
Lk′

]
=
[
aRk, a

+
Rk′

]
= δ(k− k′), (2.3)

while aL and a+L commute with aR and a+R. Then

(HL)nd =

∫
d2k

1

2
�ωS

(
aLka

+
Lk + a+LkaLk

)
, (2.4)

similarly for R, and

Vnd =

∫
d2s [ΦL(z = ζ/2)]nd [ΣR]nd (2.5)

=
�β2ωS

2

∫
d2k exp(−κ) exp(ik · σ)

(
aL,k + a+L,−k,

) (
aR,−k + a+R,−k,

)
, κ ≡ ζk.

(2.6)
Because H features only bilinearly coupled oscillators, it is easily diagonalized.

When L,R are stationary the eigenmodes are even or odd in z,

ae,o = (aL ± aR) /
√

2, ωe,o(κ) = ωS
√

1± exp(−κ) ≡ ωp,m(κ), (2.7)

Hnd(u = 0) =

∫
d2k

1

2

{
�ωp(κ)

(
apka

+
pk + a+pkapk

)
+ �ωm(κ)

(
amka

+
mk + a+mkamk

)}
.

(2.8)
The alternative subscripts p,m (for “plus” and “minus”) are introduced by hind-
sight.

Crucially, it is the fluctuations of the exact normal modes that are mutually
independent: the fluctuations in L,R are not, because of the correlations between
L,R visible from (2.7a). Just how strong they can be is illustrated in appendix
A. Because of these correlations the forces cannot be calculated perturbatively in
V . The key to F is the adiabatic method, using not V but ∂H/∂t = ∂V/∂t as
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a perturbation inducing transitions between the exact eigenmodes appropriate to
the instantaneous relative displacement σ(t). To find these eigenmodes, labelled
p,m, one must diagonalize the exact time-dependent Hamiltonian H(σ), as is
done in JPC. Technically, the problem reduces to diagonalizing, in L,R space,
certain submatrices of H having the form

[
1, e−kζ exp (itu · k)
e−kζ exp (−itu · k) , 1

]
. (2.9)

Thus motion (u �= 0) affects the eigenstates (which no longer have definite parity),
but neither the eigenvalues of H nor the eigenfrequencies.

At T = 0 the system is in the no-plasmon state. One must start, as in JPC,
by expressing Hnd =

∫
d2k [Hk]nd, and then its time-derivative, in terms of the

ap,m. One finds

∂ [Hk]nd
∂t

= i� (βωS)
2
k · u

{
e−κ+it(k·u)

4
√
ωpωm

(
a+p,k + ap,−k

) (
am,k + a+m,−k

)
−Hc

}
;

(2.10)
then the adiabatic version of the Golden Rule (Landau & Lifshitz 1977, Schiff
1968), in an obvious notation, reads

|ψ(t)〉 	 |0, 0〉+
∫ ∫

d2kpd
2km exp (−iΩt) c(t) |kp,km〉 , Ω ≡ ωp+ωm, (2.11)

∂c

∂t
=
〈kp,km| ∂Hk/∂t |0, 0〉

�Ω
exp (iΩt) , c(0) = 0. (2.12)

At times t � 1/Γ, but not so large as to invalidate the Golden Rule, plasmon
excitation-probabilities grow linearly with t, whence

P =
1

A
lim
t→∞

1

t

∫ ∫
d2kpd

2km |c(t)|2 �Ω

=
�β4ω2S
16π2ζ2

∫
d2κ (v · κ) e−2κ√

1− e−2κ
δ (Ω/ωS − v · κ) , (2.13)

where A is the (nominally infinite) total cross-sectional area. The asymptotics for
v � 1 read

P 	 �β4ω2S exp(−4/v)√
8πv3/2ζ2

=
�β4ω

7/2
S√

8πu3/2ζ1/2
exp

(
−4ωSζ

u

)
, (2.14)

tallying with a result obtained quite differently by Pendry (2010). Without dis-
sipation friction at low speeds is exponentially weak, because of the gap in the
frequency spectrum, for all k in ωp, and in ωm for all k except the end-point
k = 0.
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3. Dissipative system at zero temperature: γ �= 0, τ = 0

The vdW version of the Huttner-Barnett model1 for a dissipative heat bath, fea-
turing a continuous spectrum of otherwise unspecified oscillators, has been dis-
cussed at length elsewhere (Barton 1997, 2000, and JPC). It amounts to treating
each nondissipative normal mode according to the standard theory of a single
damped harmonic oscillator (cf Grabert et al 1984, Tatarskĭı 1987, Weiss 2008):
each such discrete mode is as it were dissolved in the continuum, where it shows
up as a resonance. For instance, the Hamiltonian (HL)nd and the potential (ΦL)nd
from (2.4) and (2.1) are replaced by

HL =

∫
d2k

∫ ∞

0

�ωS
1

2

(
aLkωa

+
Lkω + a+LkωaLkω

)
, (3.1)

ΦL(s, z) = −ωSβ

∫
d2k

∫ ∞

0

dω

√
�

4πkω

gωaLkω
[ω2S − ω2 − iωΓ]

e[ik·(s+σ/2)−k|z+ζ/2|] + Hc,

(3.2)
where gω =

√
2ω2Γ/π and

[
aLkω, a

+
Lk′ω′

]
= δ(k− k′)δ(ω − ω′).

Fortunately, given an expression waiting to be evaluated in the nd model,
there are simple rules for writing down the dissipative version. For L or R alone,
one substitutes

(aL,R)k →
∫ ∞

0

dω

√
ωS
ω

gω
[ω2S − ω2 − iωΓ]

(aL,R)kω . (3.3)

For L and R jointly, one merely replaces the discrete frequency ωS by one of the
discrete frequencies ωp,m, and aL,R by ap,m; and extends final sums

∫
d2k... to∑

e,o

∫
d2k... . Using these rules plus the nd expressions from section 2, and in

terms of dimensionless variables

x ≡ ω/ωS, xp,m ≡ ωp,m/ωS ≡
√

1± exp(−κ) , (3.4)

one obtains

P =
�β4ω2S
2π3ζ2

∫
d2κ (v · κ) e−2κ

∫ ∞

0

∫ ∞

0

dxdx′xx′γ2δ (x + x′ − v · κ)[(
x2 − x2p

)2
+ γ2x2

] [
(x′2 − x2m)2 + γ2x′2

] .

(3.5)

1See Huttner & Barnett 1992; more references are given in Barton 1997 and in JPC. Recently,
Philbin (2010, 2011) has derived an elegant alternative Hamiltonian, whose predictions to date
are the same as Huttner and Barnett’s.
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To evaluate such integrals we write
∫
d2κ... =

∫∞
0

dκκ
∫ π
−π

dφ cos(φ)... and v · κ =vκ cos(φ).
To find the asymptotics of (3.5) it suffices to observe that by virtue of the

factor exp(−2κ) we can take κ � O(1). Then, for γ � 1 as we assume, and in
view of the delta function,

v � 1 ⇒ (x, x′)� 1 ⇒ 1

[...] [...]
→ 1

x4px
4
m

=
1

(1− e−2κ)2
, (3.6)

which makes all the integrations trivial, and eventually yields

v � 1 ⇒ P 	 15ζ(5)

28π2

[
�β4ω2Sγ

2v4

ζ2

]
=

15ζ(5)

210π4

[
�β4u4

σ̄2ζ6

]
. (3.7)

Pendry (1997) gives a result smaller by a factor 12. The reasons for the discrepancy
are past recall.

Remarkably, P here is proportional to u4, and not to u2 as might reasonably
have been expected. By contrast, for an atom moving parallel to the surface of
such a half-space (Barton 2010), P does start at order u2.

4. Dissipative system at finite temperature: γ �= 0, τ �= 0

4.1. The general formula for P

By given τ we mean that, initially, the occupation numbers n of the exact eigen-
modes having frequency ω are Boltzmann-distributed with thermal averages (iden-
tified as such by overbars)

n̄(τ , x) =
1

exp(x/τ )− 1
, N̄(τ , x) ≡ n̄ +

1

2
=

1

2
coth

[ x

2τ

]
, (4.1)

N̄(−x) = −N̄(x), lim
τ→0

N̄(x) =
1

2
sign(x). (4.2)

Our aim is to determine P to orders v2, v4, and v2τ2, treating v and τ as
comparably small, and dissipation as weak ( γ � 1). It proves convenient to
introduce a dimensionless function f and to scale

Π ≡ γ2β4�ω2S/ζ
2, P = Πf(τ , v). (4.3)

For instance, from (3.7),

f(0, v) 	 15ζ(5)

28π2
· v4. (4.4)

At τ > 0, friction changes the energy through changes ±1 in the occupation
numbers of two normal modes, one p and one m. Some donkey-work finds that
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(3.5) is adapted to transitions in the same or in opposite directions, respectively, by
changing v · κδ(x+x′−v · κ) to δ(x±x′−v · κ)(x±x′) {N ′ ±N}. Remarkably, by
exploiting the antisymmetry of N̄(x) both types of contributions can be combined
into

f =
J
2π3

, J (τ , v) =
1

2

∫ ∞

0

dκκ2e−2κL, (4.5)

L ≡ v

∫ π

−π

dφ cos(φ)

∫ ∞

−∞

∫ ∞

−∞

dxdx′xx′δ (x + x′ − v · κ)
[
N̄(x) + N̄(x′)

]
[(

x2p − x2
)2

+ x2γ2
] [

(x2m − x′2)2 + x′2γ2
] , (4.6)

with the integrals now running over all x, x′ from −∞ to +∞.

4.2. Approximations

We expand the delta function in (4.6) by powers of v · κ = vκ cosφ. This is an
asymptotic approximation that cannot reach beyond the first few terms; but where
it works it is relatively simple, and liberates one from Matsubara expansions. The
explicit cosφ already in the integrand ensures that odd powers of v vanish, as they
must because P cannot depend on the direction of v. Derivatives of order j are
indicated by superscripts (j), and we implement δ(1,3)(x+x′) as [∂/∂x]1,3 δ(x+x′).
In an obvious notation

f 	 f2 + f4, J 	 J2 + J4, L 	 L2 + L4. (4.7)

The coefficient of v2 is required up to order τ2, and the coefficient of v4 only at
τ = 0. The calculations, fairly tedious, proceed through repeated integrations by
parts; they are given in JPC.
To order v2 one finds

L2 = −v

∫ π

−π

dφ cos(φ) (v · κ)
∫ ∞

−∞

∫ ∞

−∞

dxdx′xx′δ(1) (x + x′)
[
N̄(x) + N̄(x′)

]
[(

x2 − x2p
)2

+ γ2x2
] [

(x′2 − x2m)2 + γ2x′2
]

	 4v2κ

[1− exp(−2κ)]2

∫ π

−π

dφ cos2(φ)

∫ ∞

0

dx

exp(x/τ)− 1
=

ν2τ 2 (2π3/3) κ

[1− exp(−2κ)]2
. (4.8)

The approximation in the second step follows because τ � 1 ensures that the
integral is dominated by |x| , |x′| � 1. Accordingly

J2 =
1

2

∫ ∞

0

dκκ2e−2κL2 	
π2ζ(3)

8
· v2τ2, ζ(3) 	 1.202. (4.9)

To order v4 one finds
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L4 =
v4κ3

3!

∫ π

−π

dφ cos4(φ)

∫ ∞

−∞

∫ ∞

−∞

dxdx′δ (x + x′) (∂/∂x)3
{
xx′

[
N̄(x) + N̄(x′)

]}
[(

x2 − x2p
)2

+ γ2x2
] [

(x′2 − x2m)2 + γ2x′2
] .

By virtue of (4.2b) this yields

lim
τ→0

L4 =
v4κ3

3! [1− exp(−2κ)]2

∫ π

−π

dφ cos4(φ) =
v4κ3 (π/8)

[1− exp(−2κ)]2
, (4.10)

whence

J4 =
1

2

∫ ∞

0

dκκ2e−2κL4 =
15πζ(5)

27
· v4, ζ(5) 	 1.034. (4.11)

Correspondingly, f4(τ , 0) = J4/2π3 = 15ζ(5)v4/π228, confirming (4.4) and thereby
(3.7).

The end-result follows from (4.3, 4.5a, 4.7, 4.9, 4.11):

P = Π · v
2

16

{
15ζ(5)

16π2
· v2 + ζ(3)τ 2 +O

(
v4, v2τ2, τ 4

)}
, (4.12)

P 	 Πv4
15ζ(5)

256π2

{
1 +

16π2ζ(3)

15ζ(5)

(τ
v

)2}
. (4.13)

We recall

Πv4 =
�γ2β4u4

ω2Sζ
6 ,

[
γ2β4

ω2S

]

Drude

=
1

4π2σ̄2
,

(τ
v

)2
=

(
kBTζ

�u

)2
, (4.14)

and note 15ζ(5)/256π2 	 0.006156, 16π2ζ(3)/15ζ(5) 	 12.20.

4.3. The changes in occupation numbers

Looking more closely one can examine the changes ∆N(x) in the mean occupation
numbers over times ∆t short enough to be covered by the Golden Rule. They are
governed by the dynamics of the excitation mechanism, and are readily found for
any initial distribution N : inspecting the integrands of (4.5 - 4.6), and writing
v · κ =a, it is easily seen that

∆Np/∆t = R(x, a−x)
[
N̄p(x) + N̄m(a− x)

]
t=0

= R(x, a−x)
[
N̄(x) + N̄(a− x)

]
,

(4.15)
∆Nm/∆t = R(a−x, x)

[
N̄p(a− x) + N̄m(x)

]
t=0

= R(a−x, x)
[
N̄(a− x) + N̄(x)

]
,

(4.16)
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with the rate constant

R(x, a− x) =

(
γ2β4ωS/π

)
exp(−2κ)x(a− x)

[(
x2 − x2p

)2
+ γ2x2

] [
((a− x)2 − x2m)2 + γ2(a− x)2

] . (4.17)

The rightmost versions of (4.15, 4.16) apply because initially Np = Nm = N̄ . The
approximation (3.6) leads to

x, a− x� 1 : R(x, a− x) 	 γ2β4ωS

4π sinh2(κ)
x(a− x). (4.18)

We see that in this approximation, but not otherwise, ∆Np 	 ∆Nm because
R(x, a− x) 	 R(a− x, x).

Evidently the changes ∆Np,m are nonthermal, ie they differ from the changes,
call them ∆̃N = −x�ωS∆B/4 sinh2(x�ωSB/2), the same for p and m, that would
ensue from any change ∆B = −∆T/kBT

2. This becomes obvious on observing
(a) that, through R, the ∆N depend on κ, while ∆̃N does not; and (b) that even
for given κ the ∆N vary with x quite differently from ∆̃N . In other words, it
is impossible to reproduce ∆̃Np,m by any choice of ∆B independent, as it would
have to be, of κ and of x.

5. Comments and some open questions

(i) As υ rises from zero at fixed nonzero τ , we see from (4.12) that initially it is
the temperature-dependent term that is the larger. This is our most remarkable
conclusion: it reflects the apparently fortuitous vanishing of the term of order v2,
which one would have expected to be the leading term in the expansion of P by
powers of v and of τ . The temperature-dependent component ceases to dominate
when v ∼ τ .

(ii) To overall second order in V , ie perturbatively, J2 in (4.9) would lose the
factor ζ(3), a reduction by 20%. Such differences are yet another measure of the
importance of the correlations between fluctuations in L and in R: they are by
no means negligibly weak (cf appendix A), least of all for the small ζ appropriate
in the van der Waals regime. They suggest caution regarding current theories of
heat exchange insofar as they assume that the statistical fluctuations in L and
R are mutually independent (see eg Levin et al 1980, Pendry 1999, Janowicz et
al 2003). In effect, such theories treat the gap as a very weak link: the review by
Dubi & Di Ventra (2011) illustrates the snags arising in heat-flow problems when
analogous assumptions are abandoned. Similar caution might be appropriate
regarding theories of the attractive (conservative) Casimir force between L and
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R, insofar as they assume that all of L is kept at a uniform temperature TL and
all of R at a different uniform temperature TR (see eg Krüger et al 2011).

(iii) The writer thinks it likely that in the real world friction acting over any
experimentally relevant time-scale will cause occupation numbers to evolve con-
formably to some temperature rise governed by the total energy already dissipated,
rather than non-thermally according to section 4.3. This would require some sec-
ondary redistributive mechanism among the oscillators, of a kind not built into
Huttner-Barnett-type models, not yet explored, and not at all easy to visualize.
The problem stems from the fact that systems of bilinearly coupled oscillators are
not ergodic: to understand how thermal equilibrium is maintained, or reached to
begin with, one needs some not-too-unrealistic version of the speck of dust prover-
bially invoked for black-body radiation (see eg Tatarskĭı 1987). The difficulty is
that the interaction with an anodyne speck of dust is now replaced by the interac-
tion with the Huttner-Barnett heat reservoir, whose detailed dynamics apparently
begin to matter. For instance, JPC speculates that the mechanism in question
might feature more complicated couplings of the zero-order bath oscillators to the
zero-order surface and bulk plasmons, and of the latter to each other; in any case
one would need to consider to what extent and how the dissipated energy diffuses
from the surface into the bulk of the material.

(iv) In the theory we have used, Γ and σ̄ are independent of the tempera-
ture, because they parametrize the Hamiltonian, which is independent of T by
the nature of things. The same is true of the dissipative parameter(s) featuring in
Philbin’s model, which reproduces (but on an intelligible Hamiltonian basis) the
predictions of what is commonly called Lifshitz theory. This leaves open the ques-
tion of what physical significance might attach to predictions of low-temperature
behaviour, when the parameters they feature are assigned their observed T - de-
pendence.

* * *

It is a pleasure to acknowledge stimulating comments, on these and on related
matters, from Stefan Buhmann and from Tom Philbin.

A. Correlations between L and R

To illustrate how strong these can be we consider the Fourier transforms of the
surface-charge densities Σ∓(s) =

∫
d2kΣ∓(k) exp(ik · s) on L and R respectively

(when both are present), in the simple case of zero-temperature nondissipative
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metals (T = 0, Γ = 0, ω0 = 0). We define correlation functions G by

〈Σ−(k)Σ−(k′)〉 = δ(k+ k′)
k�ωS
(2π)3

G−−, 〈Σ−(k)Σ+(k′)〉 = δ(k+ k′)
k�ωS
(2π)3

G−+,

(A.1)
and compare the G’s for κ = kζ � 1 (noting that k → 0 and ζ → ∞ are
incompatible). Formulae from Barton (1997) yield

G−− = (1/
√
κ)
{
2− 3κ/2 + 49κ2/48 + κ3/2

√
2 + ...

}
, (A.2)

G−+ = (1/
√
κ)
{
−2 + 3κ/2− 49κ2/48 + κ3/2

√
2 + ...

}
. (A.3)
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