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Schwinger’s source theory

Ei(x) = /d4xr;k(X,X/)Pk(x')
Stationarity: 7 =t — t/. Causality: t’' < t.

From a statistical mechanical viewpoint: '(x, x’) is a generalized susceptibility.
Fourier transform

M, x') = / 9 e (0¥ )
Lo 2T

Kubo: o
Filr, v w) = ;/O dre T ([E(x), Ex(x)])
Generalized susceptibility the same as the retarded Green function:
Fi(x,x") = GR(x,x")
Fourier transform of the two-point function (E;(x)Ex(x")):
(Ei(r,w)Ex(r,w")) = 2 (E;i(r) Ex (' ))wd(w + W)

(Ei(r)E(r'))w: Spectral correlation tensor.

Fluctuation-dissipation theorem:

(E{(r)Ex(r'))w = Im GR(r, ', w) coth (%ﬁw) . B=1/(kgT)

Absorption necessary.
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Statistical methods for moving harmonic oscillators ( EPL 2010)

Hamiltonian Hp for uncoupled motion.
Perturbation —Aq(t), where

A: time-independent operator

q(t): classical function of time

H = Ho — Aq(t)

Put
—Aq(t) = P(r)xix,

where
1(r): coupling strength,
X1, x2: internal vibrational coordinates.

Expand
—Aq(t) = [th(ro) + Vib(ro) - vt + .. ]x1xe

Force between oscillators

B = —(Vy(r))xix

Restriction: First quantization only. Emission and absorption of photons neglected
here.

Natural choice g(t) = t implies the need of a convergence factor.

First term in above expansion: reversible equilibrium force. Friction force associated
with the time dependent interaction.

Thermal average (Kubo)



B = [ " gealt — t)a(t)dt’

Heisenberg operator
B(t) _ eitH/h,Be—ftH/h

Response function
Pa(t) = = Te{plA, B(1)]).
With q(t) = t,
#a(t) = Go(t),
= (Vy)(v- V),
o(t) = Tr{pC(t)},
C(t) = %[Xlxg,xl(t)xg(t)].

The force can be written as

F = A(B(t)) / o(t — t')t'dt’ = F, +Fy,

F, = Gt/oo $(u)du
0

is the reversible force (it depends only upon position). F, does not contribute to the
net total dissipation.

where



Friction force:

Fr=-G /000 ¢(u)udu,

in agreement with Hgye and Brevik (Physica A, 1992).
[Observe that
Gt = (Vy)Y(ro +vt), r=ro+vt,

where v here only represents a shift in position.]
Fourier transform of Fy:

9d(w)

Fr=—iG ,
Ow lw=0

where o
Hw) = / d(t)e “tdt (¢(t) =0 for t < 0)
0
. Introduce annihilation and creation operators
ai(t) = aje=wit,  a/f(t) = a;feit

1/2
x,-:< r ) (ai+a), i=12

2mjw;

=
(nilala;(t) + a;al (£)|m;) = (2n; + 1) cos(wit) + isin(wit).

Thermal average
#(t) = {(mn2|C(t)[n1n2))
= D[(2{n1) + 1) cos(wi t) sin(wat) + (2(n2) + 1) cos(wzt) sin(w1 t)],



3 h

o 2my mowiwy

1
ep = (n+§>hw

2{n;)+1= coth(%ﬁhw)

Energy levels

Insert ¢(t) into F¢ using convergence factor e~ ", 17 — 0:
oo
/0 te” " cos(wy t) sin(wpt)dt
o0 N
P+ (P +Q3)
where Q1 = w1 + wp, Qo = w1 — wo.

=
AR (V)(v - V)

8mymaw? sinh? (4 Bhwy )

™
— T 5(), 0
20, (), n—

Fr=—

6("‘)1 - UJ2)7
as in Hgye and Brevik 1992.

To get a finite result:

e Oscillators having the same frequency, w1 = wo,
e Finite temperature, T > 0.

If ) is kept finite, the Q;- term contributes.



Same result obtained by means of a path integral formalism of quantum systems at
thermal equilibrium (Hgye and Stell, 1981). Analogy with classical polymer problem
where imaginary time is a fourth dimension of length 3. Closed loops of periodicity /5.

Dissipation of energy

Dissipation associated with work done, during a finite time interval.
Motion starts at t = 0 with maximum velocity v when r = rg. At t — oo the motion
dies out.

q(t) — te™

v — vi(t) = vg(t) = v(1 — nt)e™ .
Total energy dissipated

o0 oo 1
A= [ w(®)-Fra@de=v-Fr [ la(Pde= v Fr
—o0 0 477

Reversible force F, oc t — q(t) does not contribute to the dissipation, since
I a(t)a(t)de = 0.



Extension of dissipation formula:

Force due to perturbation
t
Fr =/ baa(t —t')q(t')dt’,
—o00

where 1
Pan(t) = - Tr{p[A A(1)]}-

AEy; = /o:o v(t)Frdt = /;O:o g(t) {/joo dan(t — t)q(t")dt'| dt.

This is consistent with expression for E; above:

q(t') = q(t) — a(t)(t — ') + ...,
q(t) =t — te™ ",
dan =V -Gy,

8y == [~ oamtyus [ a0 de+ ..



Energy dissipation, calculated from first order perturbation theory ( EPJD,
2011)

Interaction effectively coupled in for a finite period of time.
Hamiltonian
H = Ho — Aq(t)

—Aq(t) = (r)x1x2
—Aq(t) = [th(ro) + Vib(ro) - vt + .. ]x1xe

w = Zand)n

Thermal equilibrium:

Probability (Boltzmann factor):

1
Pn = |3n|2 = }e_/BE",

7= e sEn.
n

Time-dependent interaction V/(t) = —Aq(t)
=
Aap = bpm,

where .
1 )
bpm = — / Vom(7)e'“ ™ dr
ihJ_so



Vom(7) = / B V() mdx = —Anm q(7),

Ao = (0l Alm) = [ 07 Ao,

Here wpm = wn — wm, with w, = Ex/A.
Assume that the perturbation vanishes after some time. Then

1 N
bom = ——Anm q(_wnm)7
ih

aw) = [ ate i,

—0o0

Take into account many neighboring states:
Aa, — Z ambnm
my
Perturbed coefficients
aip = an + Aa, = ap + Z ambnm

m##n

Thermal average uncorrelated coefficients:
(apam) =0
= New probability of the state n
Pin = <3Tnaln> = ‘an|2 + Z ‘am|2Bnm,
m#n

where
Bnm = bnmb:m = ‘bnm‘2



Loss to other states is Zm# |a,,|2Bm,,.

Then
Py = lan2 + 5" (laml? = a0*) Bam = P+ S (Pm — Pa)Bom.
m#n m
Change in energy

AE = Z(En - Em)PmBnm + Z(Empm - EnPn)Bnm - Z(En - Em)PmBnm-

— =
Z e 2BEFED A sinh(= 5A,,m)Bnm,
with Apm = Ep — Em, and
Bam = 5 Aum A~ )3 (o)

To second order, AE > 0. The dissipation occurs to the second order in the
perturbation. To first order, AE = 0; the changes are adiabatic.

Energy dissipation from friction force

As before,
t
Fr :/ dan(t — t)q(t))dt’
— o0

where

Ban(t) = =T o[, AW}



e—PH
Z b
A(t) = eftH/hp g=itH/h

p= with  Z = Tr(e™?H),

Total dissipated energy

oo oo t
sE=— [T utra—— [T | [ awoue - e)ae)ar
— 00 — 00 — 00
With wave function representation

e = 3 bl i )

pAA(t Z/¢ (X —BEnw (XI)A'lZ)m(Xl) ’“"mtq/; (X2)
nmk
xpi(xe)e™ Kt (x3) dxa e
Thus
Tr(pAA(t)) Ze BEn A e @mt A e~ iwnt

with [ ¥F (x)n(x)dx = .
Response function

1 1 . .
¢AA(t) = TfLTr {p[A7 A(t)]} — Th Z Mnm(eflwnmt _ elwnmt)7

1
Mnm e _?e_%ﬁ(E"+Em) sinh( ﬁAnm)AnmA

nm>



with Apm = En — En = hwnm.
By means of partial integrations and insertion into the expression for AE above, one
gets

1 AN A
AE = z Z Mpmw § (w) §(—w).
nm
In agreement with the result obtained above, from time dependent perturbation theory.
Friction between harmonic oscillators
Calculation directly from the last expression for AE.
Let t — te™"(n — 0).

Introduce annihilation and creation operators

1/2
X,':( h ) (a,-Jra:.r)

2mjwj

Then the interaction becomes
—Aq(t) = v(a1a2 + alaz + aIaz + aIa;r) te Mt

where
h

1
y=(=DR)?(v-V¢)), D= -——.
2 2my mywiwy



Since here only small 5 (— 0) is considered,
A= ala;r + 51(32, and q(t) = yte .
Matrix elements
Animpm4l,m—1 = <n1nz\a1a§|n1 +1,m—1)=+nm+1yny,

Anying,m—1,m41 = (nlnz\aiaﬂnl —1,m+1)y=ymvnm+1,
while all other elements are zero. The Fourier transform of q(t) is

e t —iwt 2
G(w) = te eV = ———— |
g(w) '7/0 T )
so that for n — 0,
2 2
4w)a(~w) = 5t = 2 5(w).

- (7% + w?)? 2nw?

Here w = w1 —wp. Withw -0 (m=n=+1)
. 1oA2 1 2_ 1 0 5
Anm S|nh(§,3A,,m) — EﬁAnm = i,ﬁ(i/‘w) = Eﬁh w”.

One has (n1) = (m) ~ (n), with w1 — wo, and

1—x’

oo
(n) = anx": x x = e Bhwr
n=0

Z:\/;E x" = \/;
— X
n=0

1



Then (n) +1 =1/(1 — x), by which

((m + 1)n2 + ny(n2 + 1)) = 2({n) + 1){n)

B 2x . 1
T (1-x)2 2sinh?($8hw1)’

Finally
h2 2
AE=
81 sinh“(5Bw1)
This is in agreement with the expression above.
At zero temperature, AE = 0, due to the assumption slowly varying coupling, n — 0.

With rapidly varying coupling or higher velocities, one would get a finite AE also at
T =0.

(w1 — wa).

Basic assumptions and results:

e Initial thermal equilibrium at temperature T.

e Low velocities, and nonrelativistic mechanis. Photons not included. They were
included in Brevik-Hgye, 1993.

e First order perturbation theory sufficient to calculate the energy dissipation (second
order effect), due to uncorrelated phases of eigenstates.



Comparison between different formulations (EPJD 2011)
G. Barton, New J. Phys. 12, 113044 (2010).

Assume T = 0. Interaction Hamiltonian

2
e
Hing = 3 yiy2,
S

(Gaussian units assumed). Here , y; and y» are the oscillator coordinates, and s = s(t)
is the vectorial distance between the mass centers. Introduce new coordinates

_nty
7

Then
Hint = Hint+ + Hint—,
1, e?
Hint+ = iiqyi, q= 5*3
Total dissipated energy
AE =2 x 2hw|c(o0)]?,
where

i t I
()= [ dailyion) et
2h oo



Evaluate the matrix elements in c(t):

h
y+ = Vb (ax —l—al), b= —.
2mw
Then, s
(211y2104) = b(24]a} “|04) = V2b.
=
AE = 8hwb?|I(c0)]?,
1 . !
I(t) = —— dt’ g 2wt
() T
Comparison with formalism above: Interaction Hamiltonian Hi,y = —Aq(t), with

2
e
A= —yiy, and q(t)=q= .
S
Change in energy
AE = (En — Em)PmBum,

nm

Start from ground state: Pm — Pgo = 1. Also, Bmn = |bnm|?, so that
AE = (E11 — Ego)Bi1oo = 2hwBiigo-

Calculate the transition coefficient Biigg:

aw) = [ atera

—0o0



Then
G(—wnm) = §(—w1100) = §(—2w) = 2ihl(c0).
Further,
Anm — At100 = (11| — y1y2/00) — —b.

Altogether
1 A o
Biioo = E\A1100|2Q(*2M)Q(2w) = 4b?|I(c0)?,
AE = 8hwb?|I(c0))?,

in agreement with the expression above.



