CASIMIR FRICTION FORCE FOR MOVING HARMONIC OSCILLATORS

IVER BREVIK, Norwegian University of Science and Technology, Trondheim, NORWAY

Benasque, 21 September 2011

$$\begin{array}{c|c} \varepsilon & \vee = 0 \\ \hline & \sqrt{2} \varepsilon_0 E^2 \nabla \varepsilon & \end{array}$$

$$\mathbf{f} = -\frac{1}{2}\varepsilon_0 \mathbf{E}^2 \nabla \varepsilon$$
 NORMAL FORCE

Schwinger's source theory

$$E_i(x) = \int d^4x \Gamma_{ik}(x, x') P_k(x')$$

Stationarity: $\tau = t - t'$. Causality: t' < t.

From a statistical mechanical viewpoint: $\Gamma(x,x')$ is a generalized susceptibility.

Fourier transform

$$\Gamma_{ik}(x,x') = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega\tau} \Gamma_{ik}(\mathbf{r},\mathbf{r}',\omega)$$

Kubo:

$$\Gamma_{ik}(\mathbf{r},\mathbf{r}',\omega) = i \int_0^\infty d\tau e^{i\omega\tau} \langle [E_i(x), E_k(x')] \rangle$$

Generalized susceptibility the same as the retarded Green function:

$$\Gamma_{ik}(x,x') = G_{ik}^R(x,x')$$

Fourier transform of the two-point function $\langle E_i(x)E_k(x')\rangle$:

$$\langle E_i(\mathbf{r},\omega)E_k(\mathbf{r}',\omega')\rangle = 2\pi \langle E_i(\mathbf{r})E_k(\mathbf{r}')\rangle_\omega \delta(\omega+\omega')$$

 $\langle E_i(\mathbf{r})E_k(\mathbf{r}')\rangle_{\omega}$: Spectral correlation tensor.

Fluctuation-dissipation theorem:

$$\langle E_i(\mathbf{r})E_k(\mathbf{r}')\rangle_{\omega} = Im G_{ik}^R(\mathbf{r},\mathbf{r}',\omega) \coth\left(\frac{1}{2}\beta\omega\right), \quad \beta = 1/(k_BT)$$

Absorption necessary.

Macroscopic approach

- E. V. Teodorovich, Proc. R. Soc. London A 362, 71 (1978)
- L. S. Levitov, Europhys. Lett. 8, 499 (1989)
- J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997),
 J. Mod . Opt. 45, 2389 (1998),
 New J. Phys. 12, 033028 (2010)
- A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 78, 155437 (2008)
- G. V. Dedkov and A. A. Kyasov, J. Phys.: Condens. Matter 20, 354006(2008), Surface Sci. 604, 562 (2010)
- T. G. Philbin and U. Leonhardt, New J. Phys. 11, 033035 (2009), arXiv:0904.2148

Microscopic approach

J. S. Høye and I. Brevik, EPL 91, 60003 (2010), Eur. Phys. J. D 61, 335 (2011), Eur. Phys. J. D (2011) [DOI:10.1140/epjd/e2011-20109-1]

G. Barton, New J. Phys. 12, 113044 (2010),New J. Phys. 12, 113045 (2010),New J. Phys. 13, 043023 (2011)

MODEL:

TWO HARMONIC OSCILLATORS MOVE RELATIVE TO EACH OTHER WITH CONSTANT NONRELATIVISTIC VELOCITY

J. B. PENDRY (2010): QUANTUM FRICTION - FACT OR FICTION?

Statistical methods for moving harmonic oscillators (EPL 2010)

Hamiltonian H_0 for uncoupled motion.

Perturbation -Aq(t), where

A: time-independent operator

q(t): classical function of time

$$H = H_0 - Aq(t)$$

Put

$$-Aq(t) = \psi(\mathbf{r})x_1x_2,$$

where

 $\psi(\mathbf{r})$: coupling strength,

 x_1, x_2 : internal vibrational coordinates.

Expand

$$-Aq(t) = [\psi(\mathbf{r}_0) + \nabla \psi(\mathbf{r}_0) \cdot \mathbf{v}t + \dots] x_1 x_2$$

Force between oscillators

$$\mathbf{B} = -(\nabla \psi(\mathbf{r}))x_1x_2$$

Restriction: First quantization only. Emission and absorption of photons neglected here.

Natural choice q(t) = t implies the need of a convergence factor.

First term in above expansion: reversible equilibrium force. Friction force associated with the time dependent interaction.

Thermal average (Kubo)

$$\Delta \langle \mathsf{B}(t) \rangle = \int_{-\infty}^{t} \phi_{\mathit{BA}}(t-t') q(t') dt'$$

Heisenberg operator

$$\mathbf{B}(t) = e^{itH/\hbar} \mathbf{B} e^{-itH/\hbar}$$

Response function

$$\phi_{BA}(t) = \frac{1}{i\hbar} \text{Tr}\{\rho[A, \mathbf{B}(t)]\}.$$

With q(t) = t,

$$\phi_{BA}(t) = \mathbf{G}\phi(t),$$

$$\mathbf{G} = (\nabla \psi)(\mathbf{v} \cdot \nabla \psi),$$

$$\phi(t) = \operatorname{Tr} \{ \rho \, \mathcal{C}(t) \}.$$

$$C(t) = \frac{1}{it} [x_1 x_2, x_1(t) x_2(t)].$$

The force can be written as

$$\mathbf{F} = \Delta \langle \mathbf{B}(t)
angle = \mathbf{G} \int_{-1}^{t} \phi(t - t')t'dt' = \mathbf{F}_r + \mathbf{F}_f,$$

where

$$\mathbf{F}_r = \mathbf{G}t \int_{-\infty}^{\infty} \phi(u) du$$

is the reversible force (it depends only upon position). \mathbf{F}_r does not contribute to the net total dissipation.

Friction force:

$$\mathbf{F}_f = -\mathbf{G} \int_0^\infty \phi(u) u du,$$

in agreement with Høye and Brevik (Physica A, 1992).

[Observe that

$$\mathbf{G}t = (\nabla \psi)\psi(\mathbf{r}_0 + \mathbf{v}t), \quad \mathbf{r} = \mathbf{r}_0 + \mathbf{v}t,$$

where \mathbf{v} here only represents a shift in position.] Fourier transform of \mathbf{F}_f :

$$\mathbf{F}_f = -i\mathbf{G} \frac{\partial \phi(\omega)}{\partial \omega} \Big|_{\omega=0},$$

where

$$\tilde{\phi}(\omega) = \int_{0}^{\infty} \phi(t)e^{-i\omega t}dt \quad (\phi(t) = 0 \text{ for } t < 0)$$

. Introduce annihilation and creation operators

$$a_{j}(t) = a_{j}e^{-i\omega_{j}t}, \quad a_{j}^{\dagger}(t) = a_{j}^{\dagger}e^{i\omega_{j}t}$$

$$x_{i} = \left(\frac{\hbar}{2m_{i}\omega_{i}}\right)^{1/2}(a_{i} + a_{i}^{\dagger}), \quad i = 1, 2$$

 \Rightarrow

$$\langle n_i | a_i^\dagger a_i(t) + a_i a_i^\dagger(t) | n_i
angle = (2n_i + 1) \cos(\omega_i t) + i \sin(\omega_i t).$$

Thermal average

$$\phi(t) = \langle \langle n_1 n_2 | C(t) | n_1 n_2 \rangle \rangle$$

$$= D \left[(2\langle n_1 \rangle + 1) \cos(\omega_1 t) \sin(\omega_2 t) + (2\langle n_2 \rangle + 1) \cos(\omega_2 t) \sin(\omega_1 t) \right],$$

$$D=\frac{\hbar}{2m_1m_2\omega_1\omega_2}$$

Energy levels

$$arepsilon_n = \left(n + rac{1}{2}
ight)\hbar\omega$$
 $2\langle n_i \rangle + 1 = \coth(rac{1}{2}\beta\hbar\omega)$

Insert $\phi(t)$ into \mathbf{F}_f using convergence factor $e^{-\eta t}, \eta \to 0$:

$$\begin{split} \int_0^\infty t e^{-\eta t} \cos(\omega_1 t) \sin(\omega_2 t) dt \\ &= \frac{\eta \Omega_1}{(\eta^2 + \Omega_1^2)^2} - \frac{\eta \Omega_2}{(\eta^2 + \Omega_2^2)^2} \to -\frac{\pi}{2\Omega_2} \delta(\Omega_2), \quad \eta \to 0 \end{split}$$
 where $\Omega_1 = \omega_1 + \omega_2$, $\Omega_2 = \omega_1 - \omega_2$.

 \Rightarrow

$$\mathbf{F}_f = -\frac{\pi \beta \hbar^2 (\nabla \psi) (\mathbf{v} \cdot \nabla \psi)}{8 m_1 m_2 \omega_2^2 \sinh^2 (\frac{1}{\pi} \beta \hbar \omega_1)} \delta(\omega_1 - \omega_2),$$

as in Høye and Brevik 1992.

To get a finite result:

- Oscillators having the same frequency, $\omega_1 = \omega_2$,
- Finite temperature, T > 0. If η is kept finite, the Ω_1 - term contributes.

Same result obtained by means of a path integral formalism of quantum systems at thermal equilibrium (Høye and Stell, 1981). Analogy with classical polymer problem where imaginary time is a fourth dimension of length β . Closed loops of periodicity β .

Dissipation of energy

Dissipation associated with work done, during a finite time interval. Motion starts at t=0 with maximum velocity ${\bf v}$ when ${\bf r}={\bf r}_0$. At $t\to\infty$ the motion dies out.

$$egin{aligned} q(t) &
ightarrow t \mathrm{e}^{-\eta t} \ \mathbf{v} &
ightarrow \mathbf{v}_1(t) = \mathbf{v} \dot{q}(t) = \mathbf{v}(1-\eta t) \mathrm{e}^{-\eta t}. \end{aligned}$$

Total energy dissipated

$$\Delta E_d = \int_{-\infty}^{\infty} \mathbf{v}_1(t) \cdot \mathbf{F}_f \, \dot{q}(t) dt = \mathbf{v} \cdot \mathbf{F}_f \int_{0}^{\infty} |\dot{q}(t)|^2 dt = \frac{1}{4\eta} \mathbf{v} \cdot \mathbf{F}_f$$

Reversible force $\mathbf{F}_r \propto t \to q(t)$ does not contribute to the dissipation, since $\int_0^\infty \dot{q}(t)q(t)dt=0$.

Extension of dissipation formula:

Force due to perturbation

$$F_f = \int_{-\infty}^{\tau} \phi_{AA}(t-t')q(t')dt',$$

where

$$\phi_{AA}(t) = \frac{1}{i\hbar} \operatorname{Tr} \left\{ \rho[A, A(t)] \right\}.$$

 \Rightarrow

$$\Delta E_d = \int_{-\infty}^{\infty} v(t) F_f dt = \int_{-\infty}^{\infty} \dot{q}(t) \left[\int_{-\infty}^{t} \phi_{AA}(t-t') q(t') dt' \right] dt.$$

This is consistent with expression for E_d above:

$$egin{aligned} q(t') &= q(t) - \dot{q}(t)(t-t') + ..., \ & q(t) &= t
ightarrow t e^{-\eta t}, \ & \phi_{AA} &= \mathbf{v} \cdot \mathbf{G} \psi, \end{aligned}$$

$$\Rightarrow$$

$$\Delta E_d = -\int_0^\infty \phi_{AA}(u)udu\int_0^\infty \left[\dot{q}(t)\right]^2 dt + ...,$$

Energy dissipation, calculated from first order perturbation theory (EPJD, 2011)

Interaction effectively coupled in for a finite period of time. Hamiltonian

$$H = H_0 - Aq(t)$$
$$-Aq(t) = \psi(r)x_1x_2$$

$$-Aq(t) = [\psi(\mathbf{r}_0) + \nabla \psi(\mathbf{r}_0) \cdot \mathbf{v}t + ...]x_1x_2$$

Thermal equilibrium:

$$\psi = \sum_{n} a_{n} \psi_{n}$$

Probability (Boltzmann factor):

$$P_n = |a_n|^2 = \frac{1}{Z} e^{-\beta E_n},$$

$$Z = \sum_n e^{-\beta E_n}.$$

Time-dependent interaction V(t) = -Aq(t)

$$\Rightarrow$$

where

$$b_{nm} = \frac{1}{i\hbar} \int_{-\infty}^{t} V_{nm}(\tau) e^{i\omega_{nm}\tau} d\tau$$

 $\Lambda a_n = b_{nm}$

$$V_{nm}(au) = \int \psi_n^* V(au) \psi_m dx = -A_{nm} q(au),$$
 $A_{nm} = \langle n|A|m \rangle = \int \psi_n^* A \psi_m dx,$

Here $\omega_{nm} = \omega_n - \omega_m$, with $\omega_n = E_n/\hbar$.

Assume that the perturbation vanishes after some time. Then

$$b_{nm} = -rac{1}{i\hbar}A_{nm}\,\hat{q}(-\omega_{nm}),$$
 $\hat{q}(\omega) = \int_{-\infty}^{\infty}q(t)e^{-i\omega t}dt,$

Take into account many neighboring states:

$$\Delta a_n
ightarrow \sum_{m=-\infty} a_m b_{nm}$$

Perturbed coefficients

$$a_{1n}=a_n+\Delta a_n=a_n+\sum_{n}a_mb_{nm}$$

Thermal average uncorrelated coefficients:

$$\langle a_n^* a_m \rangle = 0$$

 \Rightarrow New probability of the state n

$$P_{1n} = \langle a_{1n}^* a_{1n} \rangle = |a_n|^2 + \sum_{m=0}^{\infty} |a_m|^2 B_{nm},$$

$$B_{nm} = b_{nm}b_{nm}^* = |b_{nm}|^2$$

Loss to other states is $\sum_{m\neq n} |a_n|^2 B_{mn}$.

Then

$$P_{1n} = |a_n|^2 + \sum_{m \neq n} (|a_m|^2 - |a_n|^2) B_{nm} = P_n + \sum_m (P_m - P_n) B_{nm}.$$

Change in energy

$$\Delta E = \sum_{m} (E_n - E_m) P_m B_{nm} + \sum_{m} (E_m P_m - E_n P_n) B_{nm} = \sum_{m} (E_n - E_m) P_m B_{nm}.$$

$$\Delta E = \frac{1}{Z} \sum_{n} e^{-\frac{1}{2}\beta(E_n + E_m)} \Delta_{nm} \sinh(\frac{1}{2}\beta \Delta_{nm}) B_{nm},$$

with $\Delta_{nm} = E_n - E_m$, and

$$B_{nm}=rac{1}{\hbar^2}A_{nm}A_{nm}^*\hat{q}(-\omega_{nm})\hat{q}(\omega_{nm}).$$

To second order, $\Delta E>0$. The dissipation occurs to the second order in the perturbation. To first order, $\Delta E=0$; the changes are adiabatic.

Energy dissipation from friction force

As before,

$$F_f = \int_{-\infty}^{t} \phi_{AA}(t-t')q(t')dt',$$

$$\phi_{AA}(t) = \frac{1}{i\hbar} \operatorname{Tr} \left\{ \rho[A, A(t)] \right\}.$$

$$\rho = \frac{e^{-\beta H}}{Z}, \text{ with } Z = \text{Tr}(e^{-\beta H}),$$
$$A(t) = e^{itH/\hbar} A e^{-itH/\hbar}.$$

Total dissipated energy

$$\Delta E = -\int_{-\infty}^{\infty} v(t) F_f dt = -\int_{-\infty}^{\infty} \left[\int_{-t}^{t} \dot{q}(t) \phi_{AA}(t-t') q(t') dt' \right] dt$$

With wave function representation

$$e^{-\beta H} \to \sum_{n} \psi_{n}(x) e^{-\beta E_{n}} \psi_{n}^{*}(x_{1}),$$

$$\rho AA(t) = \frac{1}{Z} \sum_{nmk} \int \psi_{n}(x) e^{-\beta E_{n}} \psi_{n}^{*}(x_{1}) A \psi_{m}(x_{1}) e^{i\omega_{m}t} \psi_{m}^{*}(x_{2}) A$$

$$\times \psi_{k}(x_{2}) e^{-i\omega_{k}t} \psi_{k}^{*}(x_{3}) dx_{1} dx_{2}.$$

Thus

$$\operatorname{Tr}(\rho AA(t)) = rac{1}{Z} \sum_{nm} e^{-\beta E_n} A_{nm} e^{i\omega_m t} A_{mn} e^{-i\omega_n t},$$

with $\int \psi_{\nu}^*(x)\psi_n(x)dx = \delta_{kn}$.

Response function

$$\phi_{AA}(t) = rac{1}{i\hbar} \mathrm{Tr} \left\{
ho[A,A(t)]
ight\} = rac{1}{i\hbar} \sum_{nm} M_{nm} (e^{-i\omega_{nm}t} - e^{i\omega_{nm}t}),$$

$$M_{nm}=-rac{1}{Z}\mathrm{e}^{-rac{1}{2}eta(E_n+E_m)}\sinh(rac{1}{2}eta\Delta_{nm})A_{nm}A_{nm}^*,$$

with $\Delta_{nm} = E_n - E_m = \hbar \omega_{nm}$.

By means of partial integrations and insertion into the expression for $\Delta \emph{E}$ above, one gets

$$\Delta E = \frac{1}{\hbar} \sum_{nm} M_{nm} \, \omega \, \hat{q} \, (\omega) \, \hat{q}(-\omega).$$

In agreement with the result obtained above, from time dependent perturbation theory.

Friction between harmonic oscillators

Calculation directly from the last expression for ΔE .

Let $t \to t e^{-\eta t} (\eta \to 0)$.

Introduce annihilation and creation operators

$$x_i = \left(\frac{\hbar}{2m_i\omega_i}\right)^{1/2} \left(a_i + a_i^{\dagger}\right)$$

Then the interaction becomes

$$-Aq(t) = \gamma(a_1a_2 + a_1a_2^{\dagger} + a_1^{\dagger}a_2 + a_1^{\dagger}a_2^{\dagger}) te^{-\eta t},$$

$$\gamma = (\frac{1}{2}D\hbar)^{1/2}(\mathbf{v}\cdot\nabla\psi), \quad D = \frac{\hbar}{2m_1m_2\omega_1\omega_2}.$$

Since here only small η (\rightarrow 0) is considered,

$$A = a_1 a_2^{\dagger} + a_1^{\dagger} a_2$$
, and $q(t) = \gamma t e^{-\eta t}$.

Matrix elements

$$A_{n_1,n_2,n_1+1,n_2-1} = \langle n_1 n_2 | a_1 a_2^{\dagger} | n_1+1, n_2-1 \rangle = \sqrt{n_1+1} \sqrt{n_2},$$

 $A_{n_1,n_2,n_1-1,n_2+1} = \langle n_1 n_2 | a_1^{\dagger} a_2 | n_1 - 1, n_2 + 1 \rangle = \sqrt{n_1} \sqrt{n_2 + 1},$ while all other elements are zero. The Fourier transform of q(t) is

$$\hat{q}(\omega) = \gamma \int_0^\infty t \mathrm{e}^{-\eta t} \mathrm{e}^{-i\omega t} = \frac{\gamma}{(\eta + i\omega)^2},$$

so that for $\eta \to 0$,

$$\hat{q}(\omega)\hat{q}(-\omega) = rac{\gamma^2}{(\eta^2 + \omega^2)^2}
ightarrow rac{\pi\gamma^2}{2\eta\omega^2}\delta(\omega).$$

Here $\omega = \omega_1 - \omega_2$. With $\omega \to 0$ $(m = n \pm 1)$

$$\Delta_{nm} \sinh(rac{1}{2}eta \Delta_{nm})
ightarrow rac{1}{2}eta \Delta_{nm}^2 = rac{1}{2}eta(\pm\hbar\omega)^2 = rac{1}{2}eta\hbar^2\omega^2.$$

One has $\langle n_1 \rangle \approx \langle n_2 \rangle \approx \langle n \rangle$, with $\omega_1 \to \omega_2$, and

$$\langle n \rangle = \frac{\sqrt{x}}{Z} \sum_{n=0}^{\infty} n x^n = \frac{x}{1-x}, \quad x = e^{-\beta \hbar \omega_1},$$

 $Z = \sqrt{x} \sum_{n=1}^{\infty} x^n = \frac{\sqrt{x}}{1-x}.$

$$x^n = \frac{\sqrt{1-x^n}}{1-x^n}$$

Then $\langle n \rangle + 1 = 1/(1-x)$, by which

$$egin{aligned} \langle (n_1+1)n_2+n_1(n_2+1)
angle &=2(\langle n
angle+1)\langle n
angle \ &=rac{2x}{(1-x)^2}=rac{1}{2\sinh^2(rac{1}{2}eta\hbar\omega_1)}. \end{aligned}$$

Finally

$$\Delta E = rac{\pi eta \hbar^2 \gamma^2}{8 \eta \sinh^2(rac{1}{2}eta \omega_1)} \, \delta(\omega_1 - \omega_2).$$

This is in agreement with the expression above.

At zero temperature, $\Delta E=0$, due to the assumption slowly varying coupling, $\eta\to0$. With rapidly varying coupling or higher velocities, one would get a finite ΔE also at T=0.

Basic assumptions and results:

- Initial thermal equilibrium at temperature T.
- Low velocities, and nonrelativistic mechanis. Photons not included. They were included in Brevik-Høye, 1993.
- First order perturbation theory sufficient to calculate the energy dissipation (second order effect), due to uncorrelated phases of eigenstates.

Comparison between different formulations (EPJD 2011)

G. Barton, New J. Phys. 12, 113044 (2010).

Assume T=0. Interaction Hamiltonian

$$H_{\rm int} = \frac{e^2}{s^3} y_1 y_2,$$

(Gaussian units assumed). Here , y_1 and y_2 are the oscillator coordinates, and $\mathbf{s} = \mathbf{s}(t)$ is the vectorial distance between the mass centers. Introduce new coordinates

$$y_{\pm}=\frac{y_1\pm y_2}{\sqrt{2}}.$$

Then

$$H_{\text{int}} = H_{\text{int}+} + H_{\text{int}-},$$

$$H_{
m int\pm} = \pm rac{1}{2} q \, y_\pm^2, \quad q = rac{e^2}{s^3}.$$

Total dissipated energy

$$\Delta E = 2 \times 2\hbar\omega |c(\infty)|^2,$$

$$c(t) = -\frac{i}{2\hbar} \int_{-\infty}^{t} dt' q \langle 2_{+} | y_{+}^{2} | 0_{+} \rangle e^{2i\omega t'}.$$

Evaluate the matrix elements in c(t):

$$y_{\pm} = \sqrt{b} \left(a_{\pm} + a_{\pm}^{\dagger} \right), \quad b = \frac{\hbar}{2m\omega}.$$

Then,

$$\langle 2_{+}|y_{+}^{2}|0_{+}\rangle = b\,\langle 2_{+}|a_{+}^{\dagger}|0_{+}\rangle = \sqrt{2}\,b.$$

 \Rightarrow

$$\Delta E = 8\hbar\omega b^2 |I(\infty)|^2,$$

$$I(t) = -\frac{i}{2\hbar} \int^t dt' q \, e^{2i\omega t'}.$$

Comparison with formalism above: Interaction Hamiltonian $H_{\mathrm{int}} = -Aq(t)$, with

$$A = -y_1y_2$$
, and $q(t) = q = \frac{e^2}{s^3}$.

Change in energy

$$\Delta E = \sum (E_n - E_m) P_m B_{nm},$$

Start from ground state: $P_m o P_{00} = 1$. Also, $B_{mn} = |b_{nm}|^2$, so that

$$\Delta E = (E_{11} - E_{00})B_{1100} = 2\hbar\omega B_{1100}.$$

Calculate the transition coefficient B_{1100} :

$$\hat{q}(\omega) = \int_{-\infty}^{\infty} q(t)e^{-i\omega t}dt.$$

Then

 $\hat{q}(-\omega_{nm}) \rightarrow \hat{q}(-\omega_{1100}) = \hat{q}(-2\omega) = 2i\hbar I(\infty).$

 $A_{nm} \rightarrow A_{1100} = \langle 11| - y_1 y_2 |00\rangle \rightarrow -b.$

 $B_{1100} = \frac{1}{\hbar^2} |A_{1100}|^2 \hat{q}(-2\omega) \hat{q}(2\omega) = 4b^2 |I(\infty)|^2,$ $\Delta E = 8\hbar\omega b^2 |I(\infty)|^2,$

- Further,

- Altogether

in agreement with the expression above.