Dynamical Casmir effect with time dependent Robin boundary conditionsin 3 + 1 dimensions
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| ntroduction

The dynamical Casimir effect (DCE) Is a guantum vacuu
fect which consists, basically, of two closely related pimaena,
namely, particle creation due to moving mirrors and radrateac-
tion forces acting on moving boundaries.

Analogously to what happens in ordinary quantum mechafi
where a system Initially in its fundamental state can juntp Bn
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exmtec_l state due_to thg Interaction with an external tlmpe@den (0. — 1) 5D (w, ki 7))o = 4 1/ 50w — W)
potential, a quantized field can also leave its vacuum statgusmp oo 2T
into an excited state due to the interaction with an extetina- x (0, + ypww’) Do(w, ky; 2)] =0, (7)
dependent potential. _ _
In the DCE, moving boundaries can be considered as extg }%Igl(?redQ ) is the Fourier transform ofg (¢). After a straightfor-

time-dependent potentials (for example, a moving bounar
scribed by a electric permittivity and a magnetic permetahang-
INng In time). For this reason, the interaction between gaadffields
and moving mirrors induces the field to go out of its vacuuntesia
In other words, moving boundaries are responsible by partie-
ation.

In the theoretical aspect of the DCE, Moore, DeWitt and RgHi
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The pertubation 5®(w,E||;z) satisfying Helmholtz equation,

K2+ 5{3) 50 (w, ky; z) = 0, with the following BC:

ward calculation, it is not difficult to obtain:
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that Is the Bogoliubov transformation betweegp, anda;,, and their
ermitian conjugates.
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Davies|1| are considered the pioneers to discuss the DCE |
context of a real massless scalar field in two-dimensionates

e

time. Some years later, Ford and Vilenk2h proposed a perturbd-Spectral distribution

tive approach to DCE. One of the advantages of the Ford-kihés
approach is the possibility of generation of radiation bywmg mir-
rors in more realistic situations, such asiim 1 dimensions.

a series of papers devoted to the DCE from different bounciamy
ditions (BC) and initial quantum states (See Refs4]) to a gen-

eralization for the electromagnetic fielgl. In connection with thg BY taking polar coordinates, we obtain the number of pasiger

The particle distribution of the created particles insid®ame

d°k in Fourier domain is defined as:
Exploring the method presented by Ford and Vilenkin, we tbun
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last ideas, the problem of Casimir forces and particle meatue af Unit irequency interval and solid angle:

moving mirror with Robin BC was discussed by Mirgizal [4).
For a scalar field, the Robin BC is defined as:
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where~, Is the Robin parameter.
properties (See, for instande| an references therein). The pars
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The Robin BC has interesfing

et us considenq(t) given by: dq(t) = ecos(wot)e” /7, with

eter-, interpolates continuously Dirichlety — 0) and Neuman €07 >> 1. Taking the Fourier transform of this expression,

BC (1, — oo). Robin BC can simulate the plasma model in re@ft: [0Q(w)

metals for low frequencies. For < wp, the parametet, plays
the role of the plasma wavelength which is directly relaiedhie
penetration depth of the field.

In the present work, we consider a real massless scalar figld
3+1 dimensions satisfying a time-independent Robin boundainy
dition at a moving mirror:

0.9 (t,7) + 04(t)09 (1, 7) — v "¢ (£, 7)]| sy =0 (2)

The angular and spectral distributions for the createdgbestare
computed, generalizing previous results obtained by Meh&t (4.
We show that the suppression in the total number of creatdad pa
cles is still present I8 + 1 dimensions for particular values of tlhe
Robin parameter and of the mechanical frequency.

The Bogoliubov transfor mations

Considering the Ford and Vilenkin approaeh the scalar fielc
can be written as:

¢ (L, 1) = ¢o(t,7) + 09 (L, 7).

The field perturbation obeys
0°0¢(t, ) = 0 with the following BC:

(0. =) s (t,7)| = [5(1 (t) (70 102 — 05) —
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It IS convenlent to express the fleld In the Fourier domairchgu
that ®(w, kH, z) = Pp(w, k||, 2) + 0®(w, kH, z) represents the Fourigr
transformation of Eqg. (3). We can show that:
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the Klein-Gordon equatio
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Figure 1 Spectral distribution per unit frequency and solid angla asction ofw /w, for

and different values of and~, (¢p = 7 = 1).
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Figure Z Polar diagram of the spectral distribution per unit freqryeand solid angle

(o =T =1).

In Eq. (11), after an integration over solid angle, we obtain
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as being the particle distribuition per unit frequency. he same
way, after an integration over frequency, we can show that:
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with ¢ = ~yywy. In the next section, we present some numerical re:
sults for the total number of created particles.

Total number

The total number of particles created by the movement of the
boundary can be found by integrating either Egs. (12) or.(13)

N:/ dN(w)dw.
0 dw

Unfortunately, we could not yet find an analytical expresdar the
total number. However, it could be calculated numerically/dis-
played below.
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Figure 3 Total number of particles as a functionwf (v = 1, ¢¢ = 7 = 1). The result is

normalized by the number of particles in the Dirichlet € 0) case.

We see that, with low oscillation frequencieg, the creation of
particles is similar to the, = 0 case. However, fow, ~ 27"
there Is asuppression of particle creation. This feature of the Robin
boundary condition has already been noticed in [4] for thk dase.

It can be interpreted as a frequency-dependent decoupditvgelen
Ae moving boundary and the quantum field. For higher freqsn
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the particle number grows faster than in the= 0 case by one
power of~ywy, as can be seen also from thgy, > 1 limit in (12).

Final comments

In this work, we generalize t8 + 1 dimensions the results ob-
tained by Mintzet al [4| for a moving mirror with time-independent
Robin BC. The angular distribution of the created partiglas Iin-
vestigated. We have seen that the supression is still greséme
total number of the particle creation rate for particulduea of the
Robin parameter and of the mechanical frequency.
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