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Introduction

The dynamical Casimir effect (DCE) is a quantum vacuum ef-
fect which consists, basically, of two closely related phenomena,
namely, particle creation due to moving mirrors and radiation reac-
tion forces acting on moving boundaries.

Analogously to what happens in ordinary quantum mechanics,
where a system initially in its fundamental state can jump into an
excited state due to the interaction with an external time-dependent
potential, a quantized field can also leave its vacuum state and jump
into an excited state due to the interaction with an externaltime-
dependent potential.

In the DCE, moving boundaries can be considered as external
time-dependent potentials (for example, a moving boundaryde-
scribed by a electric permittivity and a magnetic permeability chang-
ing in time). For this reason, the interaction between quantized fields
and moving mirrors induces the field to go out of its vacuum state.
In other words, moving boundaries are responsible by particle cre-
ation.

In the theoretical aspect of the DCE, Moore, DeWitt and Fulling-
Davies [1] are considered the pioneers to discuss the DCE in the
context of a real massless scalar field in two-dimensional space-
time. Some years later, Ford and Vilenkin[2] proposed a perturba-
tive approach to DCE. One of the advantages of the Ford-Vilenkin’s
approach is the possibility of generation of radiation by moving mir-
rors in more realistic situations, such as in3 + 1 dimensions.

Exploring the method presented by Ford and Vilenkin, we found
a series of papers devoted to the DCE from different boundarycon-
ditions (BC) and initial quantum states (See Refs.[3, 4]) to a gen-
eralization for the electromagnetic field[5]. In connection with the
last ideas, the problem of Casimir forces and particle creation due a
moving mirror with Robin BC was discussed by Mintzet al [4].

For a scalar field, the Robin BC is defined as:
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whereγ0 is the Robin parameter. The Robin BC has interesting
properties (See, for instance,[4] an references therein). The param-
eterγ0 interpolates continuously Dirichlet (γ0 → 0) and Neumann
BC (γ0 → ∞). Robin BC can simulate the plasma model in real
metals for low frequencies. Forω ≪ ωP , the parameterγ0 plays
the role of the plasma wavelength which is directly related to the
penetration depth of the field.

In the present work, we consider a real massless scalar field in
3+1 dimensions satisfying a time-independent Robin boundary con-
dition at a moving mirror:

[∂zφ (t, ~r) + δq̇(t)∂tφ (t, ~r)− γ−1
0 φ (t, ~r)]
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The angular and spectral distributions for the created particles are
computed, generalizing previous results obtained by Mintzet al [4].
We show that the suppression in the total number of created parti-
cles is still present in3 + 1 dimensions for particular values of the
Robin parameter and of the mechanical frequency.

The Bogoliubov transformations

Considering the Ford and Vilenkin approach[2], the scalar field
can be written as:

φ (t, ~r) = φ0 (t, ~r) + δφ (t, ~r) . (3)

The field perturbation obeys the Klein-Gordon equation
∂2δφ(t, ~r) = 0 with the following BC:
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It is convenient to express the field in the Fourier domain, such
thatΦ(ω,~k‖; z) = Φ0(ω,~k‖; z) + δΦ(ω,~k‖; z) represents the Fourier
transformation of Eq. (3). We can show that:
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where
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The pertubation δΦ(ω,~k‖; z) satisfying Helmholtz equation,
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δΦ(ω,~k‖; z) = 0, with the following BC:
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whereδQ (ω) is the Fourier transform ofδq (t). After a straightfor-
ward calculation, it is not difficult to obtain:
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that is the Bogoliubov transformation betweenaout andain and their
hermitian conjugates.

Spectral distribution

The particle distribution of the created particles inside avolume
d3~k in Fourier domain is defined as:

dN(~k)

d3~k
= 〈0in| a†out(~k)aout(~k) |0in〉 . (9)

By taking polar coordinates, we obtain the number of particles per
unit frequency interval and solid angle:
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Let us considerδq(t) given by: δq(t) = ǫ0 cos(ω0t)e
−|t|/τ , with

ω0τ >> 1. Taking the Fourier transform of this expression, we
get: |δQ(ω)|2 ≈ π

2ǫ
2
0τ [δ(ω − ω0) + δ(ω + ω0)], and consequently:

dN(ω, θ)

dωdΩ
=

ǫ20τ

2π

ω(ω0 − ω) cos2 θ[1− γ2
0ω(ω0 − ω)]2Θ(ω0 − ω)

[1 + γ2
0ω

2 cos2 θ][1 + γ2
0(ω0 − ω)2 cos2 θ]

.

(11)
θ = 0 θ π= /6

γ
0

γ
0

γ
0

γ
0

γ
0

γ
0

γ
0

γ
0

γ
0

γ
0

ω/ω ω/ω

Figure 1: Spectral distribution per unit frequency and solid angle asa function ofω/ω0 for

and different values ofθ andγ0 (ǫ0 = τ = 1).

γ
0

γ
0

γ
0

γ
0

γ
0 5

Figure 2: Polar diagram of the spectral distribution per unit frequency and solid angle

(ǫ0 = τ = 1).

In Eq. (11), after an integration over solid angle, we obtain
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as being the particle distribuition per unit frequency. In the same
way, after an integration over frequency, we can show that:
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with ξ = γ0ω0. In the next section, we present some numerical re-
sults for the total number of created particles.

Total number

The total number of particles created by the movement of the
boundary can be found by integrating either Eqs. (12) or (13).

N =
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dω
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Unfortunately, we could not yet find an analytical expression for the
total number. However, it could be calculated numerically,as dis-
played below.
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Figure 3: Total number of particles as a function ofω0 (γ0 = 1, ǫ0 = τ = 1). The result is

normalized by the number of particles in the Dirichlet (γ0 = 0) case.

We see that, with low oscillation frequenciesω0, the creation of
particles is similar to theγ0 = 0 case. However, forω0 ∼ 2γ−1

0 ,
there is asuppression of particle creation. This feature of the Robin
boundary condition has already been noticed in [4] for the 1+1 case.
It can be interpreted as a frequency-dependent decoupling between
the moving boundary and the quantum field. For higher frequencies,

Nγ0ω0≫1

Nγ0=0
=

3π
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the particle number grows faster than in theγ0 = 0 case by one
power ofγ0ω0, as can be seen also from theγ0ω0 ≫ 1 limit in (12).

Final comments

In this work, we generalize to3 + 1 dimensions the results ob-
tained by Mintzet al [4] for a moving mirror with time-independent
Robin BC. The angular distribution of the created particleswas in-
vestigated. We have seen that the supression is still present in the
total number of the particle creation rate for particular values of the
Robin parameter and of the mechanical frequency.
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