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Quaternions

Quaternion are the natural extension of complex numbers and form

an algebra under addition and multiplication.

Quaternion were first described by Irish mathematician Sir William
Rowan Hamilton in 1843.
A striking feature of quaternions is that the product of two
quaternions is non commutative.
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Quaternions

The algebra H of quaternion is a four - dimensional algebra over the field
of real numbers R and a quaternion φ is expressed in terms of its four base
elements as

φ = φµeµ =φ0 + e1φ1 + e2φ2 + e3φ3 (µ = 0, 1, 2, 3), (1)

where φ0 ,φ1 ,φ2,φ3 are the real quarterate of a quaternion and e0, e1, e2,
e3 are called quaternion units and satisfies the following relations,

e0eA = eAe0 = eA; eAeB = −δABe0 + fABCeC . (∀A,B,C = 1, 2, 3) (2)

where δAB is the Kronecker delta symbol and fABC is the Levi Civita three
index symbol.
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Quaternions

As such we may write the following relations among quaternion basis
elements

[eA, eB] = 2 fABC eC ;

{eA, eB} = −2 δABe0;
eA( eB eC ) = (eA eB ) eC (3)

where brackets [ , ] and { , } are used respectively for commutation and
the anti commutation relations.

H is an associative but non commutative algebra.
Alternatively, a quaternion is defined as a two dimensional algebra
over the field of complex numbers C.
Quaternion elements are non-Abelian in nature and thus represent a
non commutative division ring.
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Octonions

The octonions form the widest normed algebra after the algebra of
real numbers, complex numbers and quaternions.
The octonions are an 8 - dimensional algebra with basis 1, e1, e2, e3,
e4, e6, e7.
Set of octets (e0, e1, e2, e3, e4, e5, e6, e7) are known as the octonion
basis elements and satisfy the following multiplication rules

e0 = 1; e0eA = eAe0 = eA

eAeB = −δABe0 + fABCeC . (A,B,C = 1, 2, ....., 7). (4)

The structure constants fABC is completely antisymmetric and takes
the value 1 for following combinations,

fABC = +1;∀(ABC) = (123), (471), (257), (165), (624), (543),(736).
(5)
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Quaternionic Lagrangian Formalism

Let us consider that we have two spin 1/2 fields, ψa and ψb. The
Lagrangian without any interaction is thus defined as

L = [iψaγ
µ∂µψa −mψaψa] + [ iψbγ

µ∂µψb −mψbψb ] (6)

where m is the mass of particle, ψa and ψb are respectively used for the

adjoint representations of ψa and ψb and the γ matrices are defined as

γ0 =

 1 0

0 −1

 ; γj =

 0 σj

−σj 0

 (∀ j = 1, 2, 3). (7)

Here σj are the well known 2× 2 Pauli spin matrices. Lagrangian density

(6) is thus the sum of two Lagrangian for particles a and b.
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Quaternionic Lagrangian Formalism
We can write above equation more compactly by combining ψa and ψb
into two component column vector;

ψ =

(
ψa
ψb

)
(8)

where ψa = (ψ0 + e1ψ1) and ψb = (ψ2 − e1ψ3) described in terms of the
field of real number representations. So, we may write the quaternionic
form of the Lagrangian in terms of ψ as

L = [iψγµ∂µψ −mψψ] (9)

Solving the Lagrangian, the Dirac equation expressed as
iγµ(∂µψ)−mψ = 0. (10)

which provide the four current as
jµ = ψ γµψ (11)

Here we developed interrelationship between SU(2) non - Abelian gauge
theory with quaternion algebra.
P. S. Bisht (Kumaun University)

Email: ps_bisht 123@rediffmail.com 8 /
37



Quaternionic SU(2) Global gauge symmetry

In global gauge symmetry, the unitary transformations are independent of

space and time. The Lagrangian density is invariant under SU(2) global

gauge transformations i.e. δL = 0. The Lagrangian density thus yields the

continuity equation after taking the variations and the definitions of Euler

Lagrange equations as

∂µ

{
∂L

∂(∂µψ)
ekψ

}
= ∂µ

{
iψγµekψ

}
= ∂µ(jµ)k = 0 (∀ k = 1, 2, 3) (12)

where the SU(2) gauge current is defined as

(jµ)k =
{

iψγµekψ
}
. (13)

which is the global current of the fermion field.
P. S. Bisht (Kumaun University)
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Quaternionic SU(2) Local Gauge Symmetry

SU(2) local gauge transformation we may replace the unitary gauge
transformation as space - time dependent.
Replacing partial derivative of global gauge symmetry to covariant
derivative of local gauge symmetry, we may write the invariant
Lagrangian density for the quaternion SU(2) gauge fields in the
following form

L = iψγµ(Dµψ)−mψψ, (14)

which yields the following current densities of electric and magnetic
charges of dyons i.e

Jµ = (jµ)electric + (jµ)magnetic = ieψ γµψ + igψ γµψ. (15)
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Quaternionic representation of isospin SU(2) group

Using the appropriate properties of quaternions and its relation with Pauli
matrices we may now describe the SU(2) isospin in terms of quaternions as

Ia =
iea
2 (∀ a = 1, 2, 3) and I± =

i
2 (e1 ± ie2) . (16)

Thus, we may write the quaternion basis elements in terms of SU(2)
isospin as

e1 =
1
i (I+ + I−) ; e2 =

1
i (I+ − I−) ; e3 =

1
i (I3) ; (17)

which satisfy the following commutation relation

[I+, I−] = ie3; [I3, I±] = ±
i
2 (e1 ± ie2) . (18)
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Quaternionic representation of isospin SU(2) group

Here SU(2) group acts upon the fundamental representation of SU(2)
doublets of up (u) and down(d) quark spinors

|u〉 =
(

1
0

)
; |d〉 =

(
0
1

)
. (19)

Up (u) and down(d) quark spinors spans the self representation space of
the flavor SU(2) group. We get for up quarks

I+ |u〉 =
i (e1 + ie2)

2 |u〉 = 0;

I− |u〉 =
i (e1 − ie2)

2 |u〉 = 1
2 |d〉 ;

I3 |u〉 =
ie3
2 |u〉 =

1
2 |u〉 ; (20)

P. S. Bisht (Kumaun University)
Email: ps_bisht 123@rediffmail.com 12

/ 37



Quaternionic representation of isospin SU(2) group

For down quarks we have

I+ |d〉 =
i (e1 + ie2)

2 |d〉 = 1
2 |u〉 ;

I− |d〉 =
i (e1 − ie2)

2 |d〉 = 0;

I3 |d〉 =
ie3
2 |d〉 = −

1
2 |d〉 (21)

Conjugates of above equations are now be described as

〈d | I+ = 〈d | i (e1 + ie2)
2 = 0;

〈d | I− = 〈d | i (e1 − ie2)
2 =

1
2 〈u| ;

〈d | I = 〈d | ie32 =
1
2 〈d | ; (22)
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Quaternionic representation of isospin SU(2) group

〈u| I+ = 〈u| i (e1 + ie2)
2 =

1
2 〈d | ;

〈u| I− = 〈u| i (e1 − ie2)
2 = 0;

〈u| I3 = 〈u|
ie3
2 =

1
2 〈u| ; (23)

The effect of quaternion operator on up |u〉 and down |d〉 quarks states

leads to

ie1 |u〉 = |d〉 ; ie1 |d〉 = |u〉 ;

e2 |u〉 = |d〉 ; e2 |d〉 = − |u〉

ie3 |u〉 = |u〉 ; ie3 |d〉 = − |d〉 . (24)
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Quaternionic representation of isospin SU(2) group

So, we may write

e1
(

u
d

)
=i
(

u
d

)
; (25)

e2
(

u
d

)
=

(
d
−u

)
; (26)

e3
(

u
d

)
=i
(

u
−d

)
; (27)

transform a neutron (down quark) state into a proton ( up quark) state or
vice verse. Only e2 gives real doublets of up and down quarks.
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Gellmann λ matrices

In order to extend the symmetry from SU(2) to SU(3) we replace three

Pauli spin matrices by eight Gellmann λ matrices. λj (j = 1, 2, ......8) be

the 3× 3 traceless Hermitian matrices introduced by Gell-Mann. Their

explicit forms are;

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0


P. S. Bisht (Kumaun University)
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Gellmann λ matrices

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (28)

which satisfy the following property as

[λj , λk ] =2Fjklλl (∀ j , k, l = 1, 2, 3, 4, 5, 6, 7, 8) (29)

where Fjkl are the structure constants of SU(3) group defined as

F123 = 1; F147 = F257 = F435 = F651 = F637 =
1
2 ;

F458 =F678 =

√
3
2 . (30)
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Relation between Octonion and Gellmann Matrices

Here we establish the relationship between octonion basis elements eA and
Gellmann λ matrices. Comparing the structure constants of octonion with
structure coefficients of Gell Mann λ matrices, we get,

[eA, eB]

[λA, λB]
=

eC
iλC

(∀A,B,C = 1, 2, 3)

⇒ [eA, eB] = [λA, λB] (∀ eC = iλC ) (31)

On the other hand we get,

[eA, eB]

[λA, λB]
=

eC
2iλC

(∀ABC = 516, 624, 471, 435, 673, 572)

⇒ [eA, eB] = [λA, λB] (∀ eC = i λC
2 ). (32)
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Relation between Octonion and Gellmann Matrices

Now we describe λ8 in terms of octonion units as

λ8 = −
2

i
√
3
{[e4, e5] + [e6, e7]} =

8e3
i
√
3
. (33)

where k = i
√
3

8 . In general these commutation relations are given as

[ea+3, e7]
[λa+3, λ7]

=
ea
2iλa

(34)

[e7, ea]

[λ7, λa]
=

ea+3
2iλa+3

(35)

P. S. Bisht (Kumaun University)
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Relation between Octonion and Gellmann Matrices

[ea, ea+3]

[λa, λa+3]
=

e7
2iλ7

(36)

where a=1,2,3. Now we find the following relationship between Gell Mann
λ matrices and octonion units:

λ1 = −ie1k1;λ2 = −ie2k2;λ3 = −ie3k3;λ4 = −ie4k4;
λ5 = −ie5k5;λ6 = −ie6k6;λ7 =− ie7k7 (37)

where ka = −1 (∀a = 1, 2, 3, ....., 7) are proportionality constants. And
also λ8 are related with e3 as

λ8 = −ik8e3 where k8 =
8√
3

(38)
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Octonionic Reformulation of QCD

Quantum chromodynamics (QCD) is a non - Abelian local gauge
theory based on a symmetry implying a quantum number called color.
The theory of strong interaction might be built by considering the
color symmetry as a local gauge symmetry, suggests that quarks
appear in three colors.
It describes the interaction between point like colored quarks and
gluon’s.
The local gauge theory of color SU(3) group gives the theory of
QCD. The QCD (quantum chromodynamics) is just a Yang Mills
theory with SU(3) gauge group.
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Octonionic Reformulation of QCD

The theory of strong interactions, quantum chromodynamics (QCD) is
based on SU(3)C group. This is a group which acts on the colour indices
of quark flavors described in the form of a basic triplet i.e.

ψ =

 ψ1
ψ2
ψ3

→
 R

B
G

 (39)

where indices R, B, and G are the three colour of quark flavors. Here we
attempt to introduce a local phase transformation in color space. Under
SU(3)c symmetry, the spinor ψ transforms as

ψ 7−→ψp = Uψ = exp {iλaα
a(x)}ψ (40)

where λ are Gellmann matrices, a = 1, 2, ......8 and the parameter α is
space time dependent.
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Octonionic Reformulation of QCD

We may develop accordingly the octonionic reformulation of quantum
chromo dynamics (QCD) on replacing the Gellmann λ matrices by
octonion basis elements eA. The value of λaα

a (x) as

8∑
a=1

λaα
a (x) = −i

7∑
q=1

eqβ
q (x) (41)

Since ψ 7−→ ψp = Uψ = exp {eqβ
q(x)}, So we may write the locally gauge

invariant SU(3)c , Lagrangian density in the following form;

Llocal =
(
iψγµDµψ −mψψ

)
−1
4Ga

µνGµν
a (42)

where Dµψ = ∂µψ + e eaAa
µψ + g eaBa

µψ. and
Ga

µν =
(
∂µAa

ν − ∂νAa
µ − e fabcAb

µAc
ν

)
+
(
∂µBa

ν − ∂νBa
µ − g fabcBb

µBc
ν

)
.
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Octonionic Reformulation of QCD
Where the e and g are the coupling constants due to the occurrence of
respectively the electric and magnetic charges on dyons. Hence the locally
gauge covariant Lagrangian density is written as

Llocal =
(
iψγµ∂µψ −mψψ

)
− e

(
ψγµψ

)
eaAa

µ − g
(
ψγµψ

)
eaBa

µ −
1
4Ga

µν

(43)
which leads to the following expression for the gauge covariant current
density of coloured dyons

Ja
µ = e

(
ψγµψ

)
ea + g

(
ψγµψ

)
ea. (44)

which leads to the conservation of Noetherian current in octonion
formulation of SU(3)c gauge theory of quantum chromodynamics (QCD)
i.e.

DµJµ = 0 where Jµ = Jµaλa. (45)
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Octonion Formulation of SU(3) Flavor Group

The Lie algebra of SU(3) exhibits most of the features of the larger
Lie algebras.
SU(3) may play a special role connected with its description in terms
of octonions.
The elements of SU(3) group may be obtained in terms of 3× 3
Hermitian Gell Mann λ Hermitian matrices related to octonions where
first three matrices describe the familiar isotopic spin generators from
the SU(2) subgroup of SU(3).
The fourth and fifth generators and the sixth and seventh generators
are denoted as the V - spin and the U - spin. V - spin connects the
up (u) and strange quarks (s) while U - spin connects the down (d)
and strange quarks (s).
SU(3) flavor group contains fundamental building blocks in isospin
space along with the strangeness.
The eighth generator is diagonal in nature responsible for hyper
charge.
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Octonion Formulation of SU(3) Flavor Group

The I, U and V− spin algebra fulfills the angular momentum algebra
and turn out to the sub algebras of SU(3).
The SU(3) multiplets are constructed in form of a I− multiplets, V−
multiplets and an U− multiplets.
The I− spin, U− spin and V−spin algebra are closely related and are
the elements of sub algebra of SU(3). SU(3) multiplets described as

I1 =
ie1
2 ; I2 = ie2

2 ; I3 =
ie3
2 (I − Spin)

V1 =
ie4
2 ; V2 =

ie5
2 ; V3 =

ie3
4
(
8
√
3+ 1

)
(U − Spin)

U1 =
ie6
2 ; U2 = i e7

2 ; U3 =
ie3
4
(
8
√
3− 1

)
(V − Spin) (46)

along with the hyper charge is written in terms of octonions as follows

Y =
1√
3
λ8 = −

8ie3√
3
. (47)
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Octonion Formulation of SU(3) Flavor Group

Here I1, I2 and I3 contain the 2× 2 isospin operators (i. e. quaternion
units).
U3, V3, I3 and Y are linearly independent generators and are
simultaneously diagonalized.
It will to be noted that λ1, λ2,λ3 agree with σ1,σ2, σ3.
The complexified variants contain the third operators I±, U±, V±
which characterizes the states of SU(3) multiplets. The operators I±,
U±, V± are defined as

I± = Ix ± iIy =
1
2 (λ1 ± iλ2) =

i
2 (e1 ± ie2) . (48)

V± = Vx ± iVy =
1
2 (λ4 ± iλ5) =

i
2 (e4 ± ie5) . (49)

U± = Ux ± iUy =
1
2 (λ6 ± iλ7) =

i
2 (e6 ± ie7) . (50)
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Octonion Formulation of SU(3) Flavor Group
With the help of shift operators and their properties, we may derive the
quark states of these multiplets as |q1〉 ,|q2〉 ,|q3〉. So the quark states of I
,U and V spin are described as

I− | q1 >=| q2 >; I+ | q2 >=| q1 > . (51)

U− | q2 >=| q3 >; U+ | q3 >=| q2 > . (52)

V− | q1 >=| q3 >; V+ | q3 >=| q1 > . (53)

Thus, the operators I±, U±, V± are viewed as operators which transforms
one flavor into another flavor of quarks

I± (I3) 7−→I3 ± 1;
V± (V3) 7−→V3 ± 1;
U± (U3) 7−→U3 ± 1. (54)

It means the action of I± ,U± and V± shifts the values of I3 ,V3 and U3 by
±1.
P. S. Bisht (Kumaun University)
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Commutation relations for Octonion Valued Shift
Operetors

The I, U and V - spin algebras are closed. Let us obtain the commutation

relations of shift operators I±, U±, V± for SU(3) group in terms of

octonions as

[U+, U−] =
ie3
2
(
8
√
3− 1

)
= 2U3;

[V+, V−] =
ie3
2
(
8
√
3+ 1

)
= 2V3;

[I+, I−] = ie3 = 2I3.

[I+, V+] = [I+,U+] = [U+,V+] =0; (55)
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Commutation relations for Octonion Valued Shift
Operetors

[Y , U±] = ±
[ i
2 (e6 ± ie7)

]
=± U±;

[Y , V±] = ±
[ i
2 (e4 ± ie5)

]
=± V±;

[Y , I±] = ±
[ i
2 (e1 ± ie2)

]
=± I±. (56)

[I+, V−] = −
[ i
2 (e6 − ie7)

]
= −U−;

[T+,U+] =

[ i
2 (e4 + ie5)

]
= V+;

[U+, V−] =
i
2 (e1 − ie2) = I−. (57)
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Commutation relations for Octonion Valued Shift
Operetors
Accordingly, we may write the hyper charge as

Y =
1√
3
λ8 = −

8ie3√
3

=
2
3 (U3 + V3) =

2
3 (2U3 + I3) =

2
3 (2V3 − I3) . (58)

and the term hyper charge Y commutes with third component of I, U and
V - spin multiplets of SU(3) flavor group

[Y , I3] = [Y , U3] = [Y , V3] =0. (59)

and it also

I+ =
i
2 (e1 ± ie2) = (I−)†

V+ =
i
2 (e4 ± ie5) = (V−)†

U+ =
i
2 (e6 ± ie7) = (U−)† . (60)
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Commutation relations for Octonion Valued Shift
Operetors
The commutation relation between the third components of I,U and V
with I± are given as

[I3, I±] = ±
[ i
2 (e1 ± ie2)

]
=± I±;

[U3, I±] = ∓
1
2

[ i
2 (e1 ± ie2)

]
=∓ 1

2 I±;

[V3, I±] = ±
1
2

[ i
2 (e1 ± ie2)

]
= ±1

2 I±; (61)

The octonions are related to raising I+, U+, V+ and lowering I−, U−,V−
operators as

e1 = i (I+ + I−) ; e2 = (I+ − I−) ; e3 = 2I3;
e4 = i (V+ + V−) ; e5 = (V+ − V−) ;
e6 = i (U+ + U−) ; e7 = (I+ + I−) . (62)
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Commutation relations for Octonion Valued Shift
Operetors

The commutation relations between I+ and I−, U+ and U−and V+ and
V− are described as

[I+, I−] = ie3 = 2I3;

[U+, U−] =
ie3
2
(
8
√
3− 1

)
= 2U3;

[V+, V−] = −
ie3
4
(
8
√
3+ 1

)
= 2V3. (63)
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Conclusion

Quaternions are used to study the successful gauge theory of electro -
weak unification and octonions are used to describe the QCD i.e. the
theory of strong interaction.
We have tried to reformulate the duality and gauge theories in terms
of hyper complex numbers over the fields of real, complex and
quaternion number system.
The quaternion formulation be adopted in a better way to understand
the explanation of the duality conjecture and gauge theories as the
candidate for the existence of monopoles and dyons where the
complex parameters are described as the constituents of quaternion.
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Conclusion

The isospin symmetries are good approximation to simplify the
interaction among hadrons.
The motivation behind the present theory was to develop a simple
compact and consistent algebraic formulation of SU(2) and SU(3)
symmetries in terms of normed algebras namely quaternions and
octonions.
We have described the compact simplified notations instead of using
the Pauli and Gell mann matrices.
In this study, We have obtained SU(2) and SU(3) groups, and many
commutating generators as simple roots, a feature that generalizes to
all lie algebras.
Octonion representation of SU(3) flavor group directly establishes the
one to one mapping between the non - associativity and the theory of
strong interactions.
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Conclusion

It also shows that the theory of hadrons (or quark - colour etc.) has
the direct link with non - associativity (octonions) while the isotopic
spin leads to non commutativity (quaternions).
The flavor properties of quarks play an important role in the weak
interaction of hadrons while color property distinguishes quarks from
leptons.
As such, normed algebras namely the algebra of complex numbers,
quaternions and octonions play an important role for the physical
interpretation of quantum electrodynamics (QED), standard model of
EW interactions and quantum chromo dynamics (QCD).
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