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Motivation

* Perfectly conducting parallel plates ->
Casimir force is always attractive.

 Technological problems: NEMS & MEMS.

e Atom-plane with a hole -> Levin et al. (2010)
— Aim: Get the analytical result.



Setting the problem

e Atom in the presence of a surface.

* Non-retarded regime (d<< A):

— Only the atom is quantized.

* Eberlein-Zietal method (2006)



Eberlein-Zietal Method

* Non-retarded regime -> EM field is not
guantized.

* Force between an atom of dipole momentum
operator d and an arbitrary perfectly
conducting surface.

* Enables to change a QM problem in an
electrostatic one.



Eberlein’s Method

* Energy of interaction:
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* If our problem admits an image, Guwill be
the potential generated by the image.



Eberlein’s Method

 Atom without permanent dipole and
orthonormal basis
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* First order:
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C.Neumann’s Peripolars

e Appropriate coordinate system for Levin’s
problem -> Peripolars:

 Symmetrical axis in the plane AAPB.
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The solution of Sommerfeld

e Potential of a single charge at r’:
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 That’s wrong in the double space!

* |t correspond to two charges:
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The solution of Sommerfeld

 We must recognize in V the superposition of
the potential of two charges!

e Cauchy’s theorem:

I R_l(z’) !
TR

Z — 2

e We choose the variable

0 /2 ;
Z=el and Z|=elO{/2



The solution of Sommerfeld

* We may write
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The solution of Sommerfeld

* Where
coshy = cosh pcosh p'—sinh psinh p'cos(¢p — ¢')

* Therefore:
R'=0=a=0+2mm =iy

* Those are branch points!
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The solution of Sommerfeld

e Sommerfeld has shown that the first term

1. Uniquely defined, finite and continuous except at
r=(p,0.¢")

2. Obeys Laplacian equation, exceptat r =(p',60',¢")
and the conducting surface.

3. Vanishes at infinity

It’s bivalent at ordinary space with a separate
branch for each winding of Riemann space.



The solution of Sommerfeld

* Potential of one charge in the double space:
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e Summing it with the potential of a charge
at(p'.0'+27.¢") we obtain the newtonian
potential.






Image

* The homogeneous Green function is
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* |t obeys BC!



The Homogeneous Green function

* We can use the method of the images by
introducing images in the space!

* We must putitatl;, = (p,4m -0',¢9").

e The solution is




-Zietal method:
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Atom-Disc

e Same procedure yields:
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Non-additivity

* Force exerted on atom by the disc:

F. =-0F

disc 7z disc

* Force exerted on atom by the plane with hole:
Fah N _&ZEhole
e Generally,
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Non-additivity

e For z=a the force is additive.

e Maybe the existence of a point to which the
force is additive is a general properties for
plane complementary surfaces.



Final Remarks

* I[mage method together with Eberlein-Zietal
method is a powerful method to treat non-

retarded dispersive interaction.

* We could treat analytically non-trivial
geometries employing Sommerfeld’s

extension.



Final Remarks

* Analytical solutions allow careful studies of
finite-size effects, non-additivity, ...

 We intend to study Sommerfeld’s extension to
the Helmholtz equation.
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