

Sommerfeld's image method in the calculation of van der Waals force

Reinaldo de Melo e Souza

In collaboration with: W. Kort-Kamp, C. Farina e C. Sigaud.

September 2011

Motivation

Perfectly conducting parallel plates ->
 Casimir force is always attractive.

Technological problems: NEMS & MEMS.

- Atom-plane with a hole -> Levin et al. (2010)
 - Aim: Get the analytical result.

Setting the problem

Atom in the presence of a surface.

- Non-retarded regime (d<< λ):
 - Only the atom is quantized.

Eberlein-Zietal method (2006)

Eberlein-Zietal Method

 Non-retarded regime -> EM field is not quantized.

- Force between an atom of dipole momentum operator d and an arbitrary perfectly conducting surface.
- Enables to change a QM problem in an electrostatic one.

Eberlein's Method

Energy of interaction:

$$V = \frac{1}{2\varepsilon_0} (\mathbf{d}.\nabla)(\mathbf{d}.\nabla') G_H(\mathbf{r},\mathbf{r}') \Big|_{\mathbf{r}=\mathbf{r}_0;\mathbf{r}'=\mathbf{r}_0}.$$

where G_H is

$$\begin{cases} -\nabla^2 G_H(\mathbf{r},\mathbf{r}') = 0, \\ \left(\frac{1}{4\pi|\mathbf{r}-\mathbf{r}'|} + G_H(\mathbf{r},\mathbf{r}')\right)_{\mathbf{r}\in\sup} = 0 \end{cases}$$

• If our problem admits an image, G_H will be the potential generated by the image.

Eberlein's Method

Atom without permanent dipole and orthonormal basis

$$\left\langle d_i d_j \right\rangle = \delta_{ij} \left\langle d_i^2 \right\rangle$$

• First order:

$$\Delta E = \frac{1}{2\varepsilon_0} \sum_{i} \langle d_i^2 \rangle \partial_i' \partial_i G_H(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r} = \mathbf{r}_0; \mathbf{r}' = \mathbf{r}_0}.$$

C.Neumann's Peripolars

- Appropriate coordinate system for Levin's problem -> Peripolars:
- Symmetrical axis in the plane $\triangle APB$.

$$\theta = A\hat{P}B$$

$$\rho = \log \frac{PA}{PB}$$

$$\phi$$

Charge-Plane with a hole (Davis-1971)

• Conducting surface: $\theta = 0$, $\theta = 2\pi$

Discontinuity!

Two fold space:

1º) REAL ->
$$0 \le \theta < 2\pi$$

2º) IMAGINARY ->
$$2\pi \le \theta < 4\pi$$

Potential of a single charge at r':

$$V = \frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{R}$$

- That's wrong in the double space!
- It correspond to two charges:

$$\begin{cases} (\rho',\theta',\phi') \\ (\rho',\theta'+2\pi,\phi') \end{cases}$$

- We must recognize in V the superposition of the potential of two charges!
- Cauchy's theorem:

$$\frac{1}{R(z)} = \oint \frac{R^{-1}(z')}{z'-z} dz'$$

We choose the variable

$$z = e^{i\theta/2}$$
 and $z' = e^{i\alpha/2}$

We may write

$$\frac{1}{R} = \oint \frac{R_{\alpha}^{-1}}{1 - e^{i(\theta - \alpha)/2}} d\alpha$$

• R_{α}^{-1} must be analytical in the contour.

$$\frac{1}{R_{\alpha}} = \frac{1}{a\sqrt{2}} \frac{\left(\cosh \rho - \cos \alpha\right)^{1/2} \left(\cosh \rho' - \cos \theta'\right)^{1/2}}{\left\{\cosh \gamma - \cos(\alpha - \theta')\right\}^{1/2}},$$

Where

$$\cosh \gamma = \cosh \rho \cosh \rho' - \sinh \rho \sinh \rho' \cos(\varphi - \varphi')$$

• Therefore:

$$R_{\alpha}^{-1} = 0 \Rightarrow \alpha = \theta' + 2m\pi \pm i\gamma$$

Those are branch points!

• We choose the circuit:

Hence,

$$\frac{1}{R} = \int_{A_0} \frac{R_{\alpha}^{-1}}{1 - e^{i(\theta - \alpha)/2}} d\alpha + \int_{A_1} \frac{R_{\alpha}^{-1}}{1 - e^{i(\theta - \alpha)/2}} d\alpha$$

This must be the decomposition we seek!

Sommerfeld has shown that the first term

- 1. Uniquely defined, finite and continuous except at $\mathbf{r} = (\rho', \theta', \phi')$
- 2. Obeys Laplacian equation, except at $\mathbf{r} = (\rho', \theta', \phi')$ and the conducting surface.
- 3. Vanishes at infinity
- 4. It's bivalent at ordinary space with a separate branch for each winding of Riemann space.

Potential of one charge in the double space:

$$V_2(\rho,\theta,z) = \frac{q}{4\pi\varepsilon_0|\mathbf{r}-\mathbf{r}'|} \left[\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left\{ \cos \frac{1}{2} (\theta - \theta') \sec h \frac{\gamma}{2} \right\} \right]$$

• Summing it with the potential of a charge at $(\rho',\theta'+2\pi,\phi')$ we obtain the newtonian potential.

Image

Image

The homogeneous Green function is

$$V_{hole} = \frac{q}{4\pi\varepsilon_0 a\sqrt{2}} \times$$

$$\left\{ \frac{(\cosh \rho - \cos \theta)^{1/2} (\cosh \rho' - \cos \theta')^{1/2}}{\left\{ \cosh \gamma - \cos (\theta - \theta') \right\}^{1/2}} \left[\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left\{ \cos \frac{1}{2} (\theta - \theta') \sec h \frac{\gamma}{2} \right\} \right] + \right\}$$

$$-\frac{(\cosh \rho - \cos \theta)^{1/2} (\cosh \rho' - \cos \theta')^{1/2}}{\left\{\cosh \gamma - \cos (\theta + \theta')\right\}^{1/2}} \left[\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left\{\cos \frac{1}{2} (\theta + \theta') \sec h \frac{\gamma}{2} \right\} \right]$$

It obeys BC!

The Homogeneous Green function

 We can use the method of the images by introducing images in the imaginary space!

• We must put it at $\mathbf{r}_i = (\rho', 4\pi - \theta', \phi')$.

The solution is

$$G_{H} = \frac{\varepsilon_{0} V_{hole}}{q} - \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|}.$$

Dispersive interaction

From Eberlein-Zietal method:

$$\Delta E = \frac{1}{2\varepsilon_0} \sum_{i} \left\langle d_i^2 \right\rangle \partial_i' \partial_i G_H(\mathbf{r}, \mathbf{r}') \Big|_{\mathbf{r} = \mathbf{r}_0; \mathbf{r}' = \mathbf{r}_0}.$$

Atom at the symmetry axis, polarizable in z:

$$\begin{split} E_{pb} &= -\frac{1}{64\varepsilon_0\pi z_0^3} \left[1 + \frac{2}{\pi} \operatorname{sen}^{-1} \left(\frac{z_0^2 - a^2}{z_0^2 + a^2} \right) - \frac{4az(3a^4 + 8a^2z_0^2 - 3z_0^4)}{3\pi(a^2 + z_0^2)^3} \right] \operatorname{se} z \geq a \\ E_{pb} &= -\frac{1}{64\varepsilon_0\pi z_0^3} \left[1 - \frac{2}{\pi} \operatorname{sen}^{-1} \left(\frac{z_0^2 - a^2}{z_0^2 + a^2} \right) - \frac{4az(3a^4 + 8a^2z_0^2 - 3z_0^4)}{3\pi(a^2 + z_0^2)^3} \right] \operatorname{se} z < a \,. \end{split}$$

Dispersive interaction

Graphically

There is repulsion!!

$$z_{eq} = 0,74235a$$

 $z_{eq}^{eb} = 0,7422a$

Atom-Disc

Atom-Disc

Same procedure yields:

$$V_{disc} = \frac{q}{4\pi\varepsilon_0 a\sqrt{2}} \times$$

$$\left\{ \frac{(\cosh \rho - \cos \theta)^{1/2} (\cosh \rho' - \cos \theta')^{1/2}}{\left\{ \cosh \gamma - \cos (\theta - \theta') \right\}^{1/2}} \left[\frac{1}{2} + \frac{1}{\pi} \sin^{-1} \left\{ \cos \frac{1}{2} (\theta - \theta') \sec h \frac{\gamma}{2} \right\} \right] + \right\}$$

$$-\frac{(\cosh\rho - \cos\theta)^{1/2}(\cosh\rho' - \cos\theta')^{1/2}}{\left\{\cosh\gamma - \cos(\theta + \theta')\right\}^{1/2}} \left[\frac{1}{2} + \frac{1}{\pi}\sin^{-1}\left\{-\cos\frac{1}{2}(\theta + \theta')\sec h\frac{\gamma}{2}\right\} \right]$$

Non-additivity

Force exerted on atom by the disc:

$$F_{disc} = -\partial_z E_{disc}$$

Force exerted on atom by the plane with hole:

$$F_{ah} = -\partial_z E_{hole}$$

Generally,

$$F := F_{ah} + F_{disc} \neq F_0$$

Non-additivity

Non-additivity

For z=a the force is additive.

 Maybe the existence of a point to which the force is additive is a general properties for plane complementary surfaces.

Final Remarks

 Image method together with Eberlein-Zietal method is a powerful method to treat nonretarded dispersive interaction.

 We could treat analytically non-trivial geometries employing Sommerfeld's extension.

Final Remarks

 Analytical solutions allow careful studies of finite-size effects, non-additivity, ...

 We intend to study Sommerfeld's extension to the Helmholtz equation.

References

- [1] C. Eberlein, R. Zietal Phys.Rev A, 75
 (2007)
- [2] C.Eberlein, R.Zietal arXiv:1103.2381v2
 (2011)
- [3] E.W. Hobson http://www.archive.org/ stream/memoirspresente00socigoog#page/ n318/mode/2up (1900)
- [4] L.C. Davis, J.R. Reitz Am.J.Phys. **39**, 1255.
- [5] A. Sommerfeld, Proc.London Math.Soc, **29**, 395.