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Introduction

Motivation: study the non-trivial dependence of the Casimir interaction
on the geometry.

L: distance of closest approach.
R: radius of the sphere.

L = L + R:
center-to-plate distance.
L
R : aspect ratio.

⇒ interesting geometry with curvature, non-specular reflection, coupling
of polarizations, finite size ( 6= plane-plane).



The Proximity Force Approximation (PFA)

FPFA = 2πR
EPP

A

GPFA = 2πR
FPP

A

Domain of validity is (L � R) but
the error is uncotrolled for L

R > 0.

ρE =
E

EPFA

= 1 + βE
L

R
+ γE

(
L

R

)2

+ · · ·

Estimation of the linear correction terms βE , βF and βG
(experimental prescription1 |βG | < 0.4).

PFA uncouples geometry from other effects.

1D.E. Krause, R.S. Decca, D. Lopez and E. Fishbach, PRL 8, 243 (2007)
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The scattering formula

R: Scattering operator | out〉 = R | in〉

Round-trip operator (ω = ıξ):

M(ıξ) = R1(ıξ)e−KLR2(ıξ)e−KL
OBJECT 1 OBJECT 2

Scattering formula2 at T = 0 and T > 0:

E =
~

2π

∫ ∞
0

dξ ln det [I −M(ıξ)]

F = kBT

′∑
n

ln det [I −M(ıξn)] with ξn = n
2πkBT

~

All information on geometry and optical properties is encoded in M(ıξ).

2A. Lambrecht, P.A. Maia Neto, and S. Reynaud, New J. Phys. 8, 243 (2006).
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Multipolar expansion in the sphere-plane geometry F = kBT
∑′

n ln det (I −M(ıξn)) ; F = −∂F∂L ; G = ∂F
∂L

M = RSe
−KLRPe

−KL ; ξn = 2πnkBT/~

[1]: projection from
spherical to planar
modes.
[2], [4]: translations.
[3]: Fresnel coefficients.
[5]: Mie coefficients.

M1;2 =

∫
d2k

(2π)2

∑
p=TE ,TM

〈l1m1P1|
[5]

RS |k,+, p〉
[4]

e−κL
[3]

rp(k)
[2]

e−κL 〈k,−, p
[1]

| l2m2P2〉︸ ︷︷ ︸
cavity operator
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`max cut-off

But numerics need dim(M) <∞ !
⇒ truncation in the spherical modes at |m| ≤ ` ≤ `max

smaller L/R ⇒ more modes
(`max & 4

L/R needed).

for a given `max, numerical
results are accurate for large
enough L

R .
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L/R = 0.2
L/R = 0.1
L/R = 0.05

⇒ Method well-adapted for L
R & 1 (→nanospheres3).

⇒ High truncation `max allows for low values of L
R .

3A. Canaguier-Durand, A. Gérardin, R. Guérout, P. A. Maia Neto, V. Nesvizhevsky,
Alexei Yu. Voronin, A. Lambrecht, S. Reynaud, Phys. Rev. A 83, 032508 (2011).
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Comparison with the Proximity Force Approximation

Estimation of β:

ρE =
E

EPFA

= 1 + βE
L

R
+ γE

(
L

R

)2

+ · · ·

⇒ extrapolation to small L
R in

order to get the βE . 0 0.05 0.1 0.15 0.2
0.8

0.85

0.9
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1

aspect ratio L/R

! E

 

 

data points
points used for fit
best quadratic fit

From the fit, βE ' −1.47 and βG = βE

3 = −0.49 .

Differs from scalar computations (8 times bigger) ⇒ coupling of
polarizations.

In contradiction with experimental |βG | < 0.4 (Krause et al. 2007).

In good agreement with other teams4.
4T. Emig, J. Stat. Mech.: Theory Exp., P04007 (2008).

Antoine Canaguier-Durand The Casimir effect in the sphere-plane geometry



Method
Zero temperature

Non-zero temperature

Perfect mirrors
Metallic reflectors

Influence of the material on the accuracy of PFA

Same procedure with plasma model5 for the mirrors ρG = Gplas

Gplas
PFA

:
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!

G
 (perfect mirrors)

!
G

 (plasma model)

R = 100 nm ; λP = 136 nm.

Accuracy of PFA is affected by
imperfect reflection.

Bending of the curve for ρG .

βplas
G ' −0.2 back inside the

experimental bound.

⇒ Correlation between the effects of geometry and finite conductivity.

5A. Canaguier-Durand, P. A. Maia Neto, I. Cavero-Pelaez, A. Lambrecht, S.
Reynaud, Phys. Rev. Lett. 102, 230404 (2009).
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Temperature and geometry (1/2)

(L,R, λT = ~c
kBT

): inclusion of T = 300 K through the Matsubara sum.

Change in the Casimir force due to the temperature6 ϑ = F (T )
F (0) :
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analytic

ϑ < ϑPFA: lower thermal
increase.

depends on R.

convergence to analytical
result (R � L).

ϑF < 1: repulsive
contribution of thermal
photons to the force.

⇒ Correlations between the effects of geometry and temperature
(already observed for scalar fields7).

6A. Canaguier-Durand, P. A. Maia Neto, A. Lambrecht, S. Reynaud, Phys. Rev.
Lett. 104, 040403 (2010).

7K. Klingmüller and H. Gies, J. Phys. A 41 164042 (2008).
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Temperature and geometry (2/2)

(L� R)-limit can computed analytically for any temperature:

Fperf ' − 3~cR3

4λTL3
φ(ν) with

{
φ(ν) = ν2 cosh ν+ν sinh ν+cosh ν sinh2 ν

2 sinh3 ν
ν = 2π LλT

.

its (T → 0)-limit in agreement with corresponding limit in a
different derivation8.

ϑ < 1 can be related to the
appearance of negative
values for the Casimir
entropy9 S = −∂F∂L .
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8M. Bordag, I. Pirozhenko, Phys. Rev. D 81 085023 (2010).
9A. Canaguier-Durand, P.A. Maia Neto, A. Lambrecht, S. Reynaud, Phys. Rev. A

82, 012511 (2010).
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Interplay between the effect of dissipation and geometry

We compare the results of plasma and Drude models by taking the ratio
F plasma

FDrude
at non-zero temperature.
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strong interplay between
geometry, temperature and
dissipation.

the gap between plasma
and Drude is always smaller.

large distance analytical
limit:

F plasma

FDrude
(L→∞) ≤ 3

2

.
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Conclusions

Scattering formalism allows to treat exactly the sphere-plane geometry,
with a full EM multipolar treatment.

The sphere-plane configuration is a simple example to study the
dependance of the Casimir effect on the geometry:

coupling of the polarizations ⇒ full EM treatment necessary.

correlations between the geometry and the effects of finite
conductivity ⇒ βG is no more in contradiction with experimental
prescription.

correlations between the geometry and temperature ⇒ temperature
can reduce |F |.
correlations between the geometry and the effects of dissipation and

temperature ⇒ Fplas

FDrud goes to a value ≤ 3
2 at large distances

(instead of 2 for plane-plane).

PhD defense September 30th in Paris (french). Manuscript online (soon).
antoine.canaguier@gmail.com
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