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Motivation: Dispersion forces + amplification

Forces on ground-state systems (atoms, bodies):

• Integration over whole frequency range ⇒ virtually no
influence of selected frequencies (e.g. lefthandedness)

Excited systems ⇒ resonant force components ⇒ enhanced
influence

• Excited atom in the presence of ground-state bodies

• High absorption may reduce effects such as lefthandedness ⇒
active media [1] ⇒ reconsideration of quantization scheme

• Creation of repulsive forces ? ⇒ overcome stiction, guidance
of atomic beams, trapping mechanisms

[1] Shalaev, Nat. Phot. 1, 41–48 (2006)
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• General
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• Noise current density

ĵ
N
(r, ω) = ω

√

~ε0
π

Im ε(r, ω)f̂(r, ω)

• Bosonic dynamical variables: f̂(r, ω)

• Hamiltonian

Ĥ =

∫

d3r

∫ ∞

0
dω~ωf̂†(r, ω) · f̂(r, ω)

ĵ
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What is meant by an amplifying body?

• Amplification in a limited space and frequency regime with

Im ε(r, ω) < 0

(isotropic, local, causal – obeys Kramers-Kronig relations)

• Assumption: medium response linear ⇒ Green tensor is
analytic in the upper ω half plane

• Medium-assisted electromagnetic field is pumped in an excited
state ⇒ quasi-stationary regime

f̂(r, ω)| {0}〉 = 0 ∀r, ω
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Quantization in linear amplifying media

• Noise current density

ĵ
N
(r, ω) = ω

√

~ε0π−1|Im ε(r, ω)|

× [Θ[Im ε(r, ω)]̂f(r, ω) + Θ[−Im ε(r, ω)]̂f†(r, ω)]
ĵ
N

G Ê

⋆

⋆
⋆

⋆⋆

⋆

⋆
⋆

[1] Raabe and Welsch, Eur. Phys. J. Spec. Top., 160, 1 (2008)
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Ĥ =

∫

d3r

∫ ∞

0
dω ~ωsgn[Im ε(r, ω)]̂f†(r, ω)·̂f(r, ω)

ĵ
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Quantization in linear amplifying media

• Noise current density

ĵ
N
(r, ω) = ω

√

~ε0π−1|Im ε(r, ω)|

× [Θ[Im ε(r, ω)]̂f(r, ω) + Θ[−Im ε(r, ω)]̂f†(r, ω)]

• Hamiltonian

Ĥ =

∫

d3r

∫ ∞

0
dω ~ωsgn[Im ε(r, ω)]̂f†(r, ω)·̂f(r, ω)

• ⇒ explicit field quantization [1]

Ê = Ê[̂f, f̂†], B̂ = B̂[̂f, f̂†] and ρ̂ = ρ̂[̂f, f̂†], ĵ = ĵ[̂f, f̂†]

ĵ
N

G Ê

⋆

⋆
⋆

⋆⋆

⋆

⋆
⋆

[1] Raabe and Welsch, Eur. Phys. J. Spec. Top., 160, 1 (2008)
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The problem

V

⋆

⋆

⋆
⋆⋆

⋆

⋆

F?

ρ̂(r), ĵ(r)

Average Lorentz force

F =

∫

V

d3r 〈ρ̂(r)Ê(r′) + ĵ(r)× B̂(r′)〉r′→r
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Result for absorbing media [1]

Fnr ≡ F = −
~

π

∫

V

d3r

∫ ∞

0
dξ

{

ξ2

c2
∇ · G(r, r′, iξ)

−Tr

[

I×

(

∇×∇× +
ξ2

c2

)

G(r, r′, iξ)×
←−
∇

′

]}

r′→r
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Result for absorbing media [1]

Fnr ≡ F = −
~

π

∫

V

d3r

∫ ∞

0
dξ

{

ξ2

c2
∇ · G(r, r′, iξ)

−Tr

[

I×

(

∇×∇× +
ξ2

c2

)

G(r, r′, iξ)×
←−
∇

′

]}

r′→r

⇒ emission of virtual photons

[1] Raabe and Welsch Phys. Rev. A 73, 1 063822 (2006)
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Result for amplifying media

F = Fr + Fnr

Fr =−
2~

πc2

∫

V

d3r

∫ ∞

0
dωω2

∫

d3sIm ε(s, ω)Θ[−Im ε(s, ω)]

×Re
{

ω2/c2∇ · G(r, s, ω) ·G∗(s, r′, ω)

+Tr
[

I×
(

∇×∇×−ω2/c2
)

G(r, s, ω) · G∗(s, r′, ω)×
←−
∇

′
]}

r′→r
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Result for amplifying media

F = Fr + Fnr

Fr =−
2~

πc2

∫

V

d3r

∫ ∞

0
dωω2

∫

d3sIm ε(s, ω)Θ[−Im ε(s, ω)]

×Re
{

ω2/c2∇ · G(r, s, ω) ·G∗(s, r′, ω)

+Tr
[

I×
(

∇×∇×−ω2/c2
)

G(r, s, ω) · G∗(s, r′, ω)×
←−
∇

′
]}

r′→r

⇒ emission of real photons [1]

[1] Sambale, Welsch, Buhmann, Ho, Phys. Rev A 80 (5),
051801(R) (2009)
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Force on dilute amplifying bodies

Expand to (leading) linear order in ε(r, ω) − 1 (r ∈ V ),

ε(ω)−1 =
ηαn(ω)

ε0
, αn(ω) = lim

ǫ→0

1

3~

∑

k

[

|dnk |
2

ω + ωkn + iǫ
−

|dnk |
2

ω − ωkn + iǫ

]
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Force on dilute amplifying bodies

Expand to (leading) linear order in ε(r, ω) − 1 (r ∈ V ),

ε(ω)−1 =
ηαn(ω)

ε0
, αn(ω) = lim

ǫ→0

1

3~

∑

k

[

|dnk |
2

ω + ωkn + iǫ
−

|dnk |
2

ω − ωkn + iǫ

]

F =

∫

d3rη∇Un(r)

Casimir–Polder potential: Un(r) = Unr

n (r) + Ur

n(r)

Unr

n (r) =
~µ0

2π

∫ ∞

0
dξξ2αn(iξ)TrG

(1)
(r, r, iξ)

Ur

n(r) = −
µ0

3

∑

k

Θ(ωnk)ω
2
nk |dnk |

2TrReG
(1)

(r, r, ωnk )

G: Green tensor in the absence of the amplifying body
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Example: Sample of excited gas atoms near a perfect
mirror
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F(z) ≈ Fr(z) =
µ0

3
ηω2

10|d10|
2 c2

32πω2
10z

3
A

×
[

(2− 4ω2
10/c

2z2A) cos(2ω10zA/c) + 4ω10zA/c sin(2ω10zA/c)
]zA=z+d

zA=z
ez
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• Oscillations in retarded regime

• Attractive behaviour in nonretarded regime for metals
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Summary: Optical dilute amplifying body

• Nonresonant component always attractive but dominated by

• Resonant component:
• nonretarded regime power law 1/d3: metals → attraction; but

for dielectrica repulsion possible Fres ∝ Re
|ε|2−1
|ε+1|2

• retarded regime: force oscillates

Now: Going beyond optically dilute limit
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Stress tensor approach

Velocity-independent system: Casimir force = surface integral over
the outer boundaries of the body (volume V )

F =

∫

∂V

da ·T(r)

with stress tensor

T(r) = lim
r′→r

T(r, r′)

= ε0 〈{0}| Ê(r)Ê(r
′) |{0}〉+ µ−1

0 〈{0}| B̂(r)B̂(r
′) |{0}〉

−
1

2

(

ε0 〈{0}| Ê(r) · Ê(r
′) |{0}〉+ µ−1

0 〈{0}| B̂(r) · B̂(r
′) |{0}〉

)

I
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Field correlation functions

〈0|Ê(r)Ê(r′)|0〉 =
~

πε0

∫ ∞

0
dω

ω2

c2
ImG(r, r′, ω)

− 2
~

πε0

∫

d3s

∫ ∞

0
dω

ω4

c4
Im ε(s, ω)

× Re[G(r, s, ω) ·G∗(s, r′, ω)]Θ[−Im ε(s, ω)]
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Field correlation functions

〈0|Ê(r)Ê(r′)|0〉 =
~

πε0

∫ ∞

0
dω

ω2

c2
ImG(r, r′, ω)

− 2
~

πε0

∫

d3s

∫ ∞

0
dω

ω4

c4
Im ε(s, ω)

× Re[G(r, s, ω) ·G∗(s, r′, ω)]Θ[−Im ε(s, ω)]

〈0|B̂(r)B̂(r′)|0〉 = −
~

πε0

∫ ∞

0
dω

1

c2
∇× ImG(r, r′, ω)×

←−
∇

′

− 2
~

πε0

∫

d3s

∫ ∞

0
dω

ω2

c4
Im ε(s, ω)

× Re[∇× G(r, s, ω) · G∗(s′, r′, ω)×
←−
∇

′]Θ[−Im ε(s, ω)]
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Setup
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Nonresonant contribution

f = −
~

2π2

∫ ∞

0
dξ

∫ ∞

0
dk‖k‖κ⊥

∑

σ=s,p

rσ2+r
σ
2−e

−2κ⊥d2

1− rσ2−r
σ
2+e

−2κ⊥d2
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Nonresonant contribution

f = −
~

2π2
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0
dξ
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0
dk‖k‖κ⊥

∑

σ=s,p

rσ2+r
σ
2−e

−2κ⊥d2

1− rσ2−r
σ
2+e

−2κ⊥d2

Ideal case: Amplification for all frequencies: 0 < ε3(iξ) < 1 ∀ξ ⇒
κ⊥(iξ) =

√

ε(iξ)ξ2/c2 + k‖
2 no ambiguity
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Nonresonant contribution

f = −
~

2π2

∫ ∞

0
dξ

∫ ∞

0
dk‖k‖κ⊥

∑

σ=s,p

rσ2+r
σ
2−e

−2κ⊥d2

1− rσ2−r
σ
2+e

−2κ⊥d2

Ideal case: Amplification for all frequencies: 0 < ε3(iξ) < 1 ∀ξ ⇒
κ⊥(iξ) =

√

ε(iξ)ξ2/c2 + k‖
2 no ambiguity

Nonretarded limit: d3 →∞

fnret =
~

8π2d3
2

∫ ∞

0
dξLi3

[1− ε3(iξ)

ε3(iξ) + 1

ε1(iξ)− 1

ε1(iξ) + 1

]

ez
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Retarded limit (d3 →∞): ε1,3 static values

f ret =
3~c

16π2d4
2

∫ ∞

1

dv

v2

{

Li4

[v −
√

ε1 − 1 + v2

v +
√

ε1 − 1 + v2

√

ε3 − 1 + v2 − v

v +
√

ε3 − 1 + v2

]

+ Li4

[ε1v −
√

ε1 − 1 + v2

ε1v +
√

ε1 − 1 + v2

√

ε3 − 1 + v2 − ε3v

ε3v +
√

ε3 − 1 + v2

]}

ez

⇒ If amplification is present in a sufficiently large frequency
regime the nonresonant component becomes repulsive.



Outline Motivation Field quantization Casimir force Plate geometry Summary and Outlook

Nonretarded limit (preliminary result)

Set k⊥ = ik‖ in all layers (k‖ ∈ R, single-layer reflection
independent of wave vector, only p-polarization)

f = fnretnres + fnretres

fnretnres = −
~

2π2

∫ ∞

0
dξ

∫ ∞

0
dk‖k‖2

e−2k‖d2r
p
2−r

p
2+

1− r
p
2−r

p
2+e

−2k‖d2
ez

fnretres = −
~

2π2

∫

dωΘ[−Im ε3(ω)]|Im ε3(ω)|

∫ ∞

0
dk‖k‖2

× Re r
p
21|t

p
23|

2 e−2k‖d2

|1 + r
p
3−r

p
23e

−2k‖d3 |2|1− r
p
21r

p
23e

−2k‖d2 |2

×
[

(1− e−2k‖d3) + |rp23|
2(e−2k‖d3 − e−4k‖d3)

]

ez
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Approximation: d3 →∞, neglect of multiple reflections

fnretres = −
~

2π2d3
2

∫

dωΘ[−Im ε3(ω)]|Im ε3(ω)|
|ε3(ω)|(|ε1(ω)|

2 − 1)

|ε1(ω) + 1|2|ε3(ω) + 1|2

⇒ repulsion possible
Perfect mirror:

fnretres = −
~

2π2d3
2

∫

dωΘ[−Im ε3(ω)]|Im ε3(ω)|
|ε3(ω)|

|ε3(ω) + 1|2

⇒ attractive
Power law in agreement with resonant Casimir–Polder force on
excited atom
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• Nonresonant contribution: can be repulsive for large
gain-assisted frequency regime but is expected to be
dominated by

• Resonant contribution
• Nonretarded limit: attraction for metals, for dielectrica

repulsion possible
• Open: Retarded limit ⇒ discuss choice of the wave vector

Expect: Oscillations in consisteny with the optically dilute case



Outline Motivation Field quantization Casimir force Plate geometry Summary and Outlook

Choice of the wavevector in amplifying media
Problem: Amplification in limited frequency regime, expect
resonant force components, ε3(ω) complex and
k⊥3 (ω) =

√

ε3ω2/c2 − k‖2

Physical requirements:
• Agreement with with bulk amplifying medium
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Choice of the wavevector in amplifying media
Problem: Amplification in limited frequency regime, expect
resonant force components, ε3(ω) complex and
k⊥3 (ω) =

√

ε3ω2/c2 − k‖2

Physical requirements:
• Agreement with with bulk amplifying medium
• Green tensor should be finite, evanescent waves should decay,
propagating waves should be amplified

• Chosen contour should avoid branch cut

Im k⊥3

Re k⊥3

√
ε3

ω
c

k⊥3 = ik‖

k⊥3 = |k⊥3 |e iφ

−π/4 < φ < 3/4π
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[1] Sambale, Welsch, Buhmann, Ho, J. Opt. Spec., 108, 3
(2010)
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Summary and Outlook

• Casimir force on a linear partially amplifying body has
resonant force components ⇒ repulsion for dielectrica possible
in the nonretarded limit

• Contact to Casimir–Polder forces: force on excited atoms
∑

−→
force on dilute amplifying body

• To be done: Going beyond nonretarded limit

• Our approach can be expanded to include magnetoelectric
bodies [1] ⇒ lefthandedness, metamaterials

[1] Sambale, Welsch, Buhmann, Ho, J. Opt. Spec., 108, 3
(2010)
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