

Casimir force on amplifying bodies

Agnes Sambale¹ Stefan Yoshi Buhmann²

¹Friedrich-Schiller-Universität Jena ²Imperial College, London

QFEXT 2011, Benasque

Outline

Motivation

Field quantization

Casimir force in the presence of amplification

Casimir force on an amplifying plate

Summary and Outlook

Field quantization

Casimir force in the presence of amplification

Casimir force on an amplifying plate

Summary and Outlook

Motivation: Dispersion forces + amplification

Forces on ground-state systems (atoms, bodies):

 Integration over whole frequency range ⇒ virtually no influence of selected frequencies (e.g. lefthandedness)

Motivation: Dispersion forces + amplification

Forces on ground-state systems (atoms, bodies):

 Integration over whole frequency range ⇒ virtually no influence of selected frequencies (e.g. lefthandedness)

Excited systems \Rightarrow resonant force components \Rightarrow enhanced influence

Motivation: Dispersion forces + amplification

Forces on ground-state systems (atoms, bodies):

 Integration over whole frequency range ⇒ virtually no influence of selected frequencies (e.g. lefthandedness)

Excited systems \Rightarrow resonant force components \Rightarrow enhanced influence

• Excited atom in the presence of ground-state bodies

Motivation: Dispersion forces + amplification

Forces on ground-state systems (atoms, bodies):

 Integration over whole frequency range ⇒ virtually no influence of selected frequencies (e.g. lefthandedness)

Excited systems \Rightarrow resonant force components \Rightarrow enhanced influence

- Excited atom in the presence of ground-state bodies
- High absorption may reduce effects such as lefthandedness \Rightarrow active media [1] \Rightarrow reconsideration of quantization scheme

Motivation: Dispersion forces + amplification

Forces on ground-state systems (atoms, bodies):

 Integration over whole frequency range ⇒ virtually no influence of selected frequencies (e.g. lefthandedness)

Excited systems \Rightarrow resonant force components \Rightarrow enhanced influence

- Excited atom in the presence of ground-state bodies
- High absorption may reduce effects such as lefthandedness \Rightarrow active media [1] \Rightarrow reconsideration of quantization scheme
- Creation of repulsive forces ? \Rightarrow overcome stiction, guidance of atomic beams, trapping mechanisms
- [1] Shalaev, Nat. Phot. 1, 41–48 (2006)

Field quantization

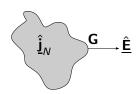
Casimir force in the presence of amplification

Casimir force on an amplifying plate

Summary and Outlook

• General

$$\underline{\hat{\mathbf{E}}}(\mathbf{r},\omega) = i\omega\mu_0 \int \mathrm{d}^3 r' \mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \cdot \underline{\hat{\mathbf{j}}}_N(\mathbf{r}',\omega)$$

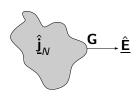


• General

$$\hat{\mathbf{E}}(\mathbf{r},\omega) = i\omega\mu_0 \int \mathrm{d}^3 r' \mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \cdot \hat{\mathbf{j}}_N(\mathbf{r}',\omega)$$

• Noise current density

$$\underline{\hat{\mathbf{j}}}_{N}(\mathbf{r},\omega) = \omega \sqrt{\frac{\hbar\varepsilon_{0}}{\pi}} \mathrm{Im}\,\varepsilon(\mathbf{r},\omega) \mathbf{\hat{\mathbf{f}}}(\mathbf{r},\omega)$$

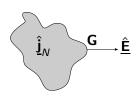


• General

$$\hat{\mathbf{E}}(\mathbf{r},\omega) = i\omega\mu_0 \int \mathrm{d}^3 r' \mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \cdot \hat{\mathbf{j}}_N(\mathbf{r}',\omega)$$

• Noise current density

$$\hat{\mathbf{j}}_{N}(\mathbf{r},\omega) = \omega \sqrt{\frac{\hbar\varepsilon_{0}}{\pi}} \mathrm{Im}\,\varepsilon(\mathbf{r},\omega) \hat{\mathbf{f}}(\mathbf{r},\omega)$$



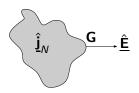
• Bosonic dynamical variables: $\hat{\mathbf{f}}(\mathbf{r},\omega)$

General

$$\hat{\mathbf{E}}(\mathbf{r},\omega) = i\omega\mu_0 \int \mathrm{d}^3 r' \mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \cdot \hat{\mathbf{j}}_N(\mathbf{r}',\omega)$$

• Noise current density

$$\underline{\hat{\mathbf{j}}}_{N}(\mathbf{r},\omega) = \omega \sqrt{\frac{\hbar\varepsilon_{0}}{\pi}} \mathrm{Im}\,\varepsilon(\mathbf{r},\omega) \mathbf{\hat{\mathbf{f}}}(\mathbf{r},\omega)$$



- Bosonic dynamical variables: $\hat{\mathbf{f}}(\mathbf{r},\omega)$
- Hamiltonian

$$\hat{H} = \int \mathrm{d}^3 r \int_0^\infty \mathrm{d}\omega \hbar \omega \hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega) \cdot \hat{\mathbf{f}}(\mathbf{r},\omega)$$

What is meant by an amplifying body?

• Amplification in a limited space and frequency regime with

 $\operatorname{Im}\varepsilon(\mathbf{r},\omega)<0$

(isotropic, local, causal - obeys Kramers-Kronig relations)

What is meant by an amplifying body?

• Amplification in a limited space and frequency regime with

 $\operatorname{Im}\varepsilon(\mathbf{r},\omega)<0$

(isotropic, local, causal - obeys Kramers-Kronig relations)

• Assumption: medium response linear \Rightarrow Green tensor is analytic in the upper ω half plane

What is meant by an amplifying body?

• Amplification in a limited space and frequency regime with

 $\operatorname{Im}\varepsilon(\mathbf{r},\omega)<0$

(isotropic, local, causal – obeys Kramers-Kronig relations)

- Assumption: medium response linear \Rightarrow Green tensor is analytic in the upper ω half plane
- Medium-assisted electromagnetic field is pumped in an excited state ⇒ quasi-stationary regime

$$\hat{\mathbf{f}}(\mathbf{r},\omega)|\left\{\mathbf{0}
ight\}
ight
angle=\mathbf{0}\quadorall\mathbf{r},\omega$$

Quantization in linear amplifying media

• Noise current density

$$\frac{\hat{\mathbf{j}}_{N}(\mathbf{r},\omega) = \omega \sqrt{\hbar\varepsilon_{0}\pi^{-1}|\operatorname{Im}\varepsilon(\mathbf{r},\omega)|}}{\times \left[\Theta[\operatorname{Im}\varepsilon(\mathbf{r},\omega)]\hat{\mathbf{f}}(\mathbf{r},\omega) + \Theta[-\operatorname{Im}\varepsilon(\mathbf{r},\omega)]\hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega)\right]} \xrightarrow{\star}_{\star} \underbrace{\hat{\mathbf{j}}_{N}}_{\star} \underbrace{\hat{\mathbf{j}}_{N}}$$

[1] Raabe and Welsch, Eur. Phys. J. Spec. Top., 160, 1 (2008)

Quantization in linear amplifying media

• Noise current density

$$\hat{\underline{\mathbf{j}}}_{N}(\mathbf{r},\omega) = \omega \sqrt{\hbar\varepsilon_{0}\pi^{-1}|\operatorname{Im}\varepsilon(\mathbf{r},\omega)|} \times \left[\Theta[\operatorname{Im}\varepsilon(\mathbf{r},\omega)]\hat{\mathbf{f}}(\mathbf{r},\omega) + \Theta[-\operatorname{Im}\varepsilon(\mathbf{r},\omega)]\hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega)\right] \quad \star$$

Hamiltonian

$$\hat{H} = \int \mathrm{d}^3 r \int_0^\infty \mathrm{d}\omega \, \hbar \omega \mathrm{sgn}[\mathrm{Im}\, \varepsilon(\mathbf{r},\omega)] \hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega) \cdot \hat{\mathbf{f}}(\mathbf{r},\omega)$$

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

[1] Raabe and Welsch, Eur. Phys. J. Spec. Top., 160, 1 (2008)

Quantization in linear amplifying media

• Noise current density

$$\frac{\hat{\mathbf{j}}_{N}(\mathbf{r},\omega) = \omega \sqrt{\hbar\varepsilon_{0}\pi^{-1}|\mathrm{Im}\,\varepsilon(\mathbf{r},\omega)|} \times [\Theta[\mathrm{Im}\,\varepsilon(\mathbf{r},\omega)]\hat{\mathbf{f}}(\mathbf{r},\omega) + \Theta[-\mathrm{Im}\,\varepsilon(\mathbf{r},\omega)]\hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega)]$$

Hamiltonian

$$\hat{H} = \int \mathrm{d}^3 r \int_0^\infty \mathrm{d}\omega \, \hbar \omega \mathrm{sgn}[\mathrm{Im}\,\varepsilon(\mathbf{r},\omega)] \hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega) \cdot \hat{\mathbf{f}}(\mathbf{r},\omega)$$

• \Rightarrow explicit field quantization [1]

$$\hat{\mathbf{E}} = \hat{\mathbf{E}}[\hat{\mathbf{f}}, \hat{\mathbf{f}}^{\dagger}], \ \hat{\mathbf{B}} = \hat{\mathbf{B}}[\hat{\mathbf{f}}, \hat{\mathbf{f}}^{\dagger}] \text{ and } \hat{\rho} = \hat{\rho}[\hat{\mathbf{f}}, \hat{\mathbf{f}}^{\dagger}], \ \hat{\mathbf{j}} = \hat{\mathbf{j}}[\hat{\mathbf{f}}, \hat{\mathbf{f}}^{\dagger}]$$

[1] Raabe and Welsch, Eur. Phys. J. Spec. Top., 160, 1 (2008)

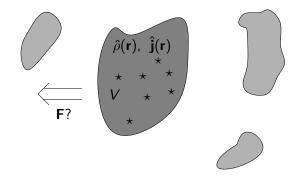


Field quantization

Casimir force in the presence of amplification

Casimir force on an amplifying plate

Summary and Outlook



Average Lorentz force

$$\mathbf{F} = \int_{V} \mathrm{d}^{3} r \, \langle \hat{\rho}(\mathbf{r}) \hat{\mathbf{E}}(\mathbf{r}') + \hat{\mathbf{j}}(\mathbf{r}) \times \hat{\mathbf{B}}(\mathbf{r}') \rangle_{\mathbf{r}' \to \mathbf{r}}$$

Outline

Result for absorbing media [1]

$$\mathbf{F}^{\mathrm{nr}} \equiv \mathbf{F} = -\frac{\hbar}{\pi} \int_{V} \mathrm{d}^{3} \mathbf{r} \int_{0}^{\infty} \mathrm{d}\xi \left\{ \frac{\xi^{2}}{c^{2}} \nabla \cdot \mathbf{G}(\mathbf{r}, \mathbf{r}', i\xi) - \mathrm{Tr} \left[\mathbf{I} \times \left(\nabla \times \nabla \times + \frac{\xi^{2}}{c^{2}} \right) \mathbf{G}(\mathbf{r}, \mathbf{r}', i\xi) \times \overleftarrow{\nabla}' \right] \right\}_{\mathbf{r}' \to \mathbf{r}}$$

Result for absorbing media [1]

$$\begin{aligned} \mathbf{F}^{\mathrm{nr}} &\equiv \mathbf{F} = -\frac{\hbar}{\pi} \int_{V} \mathrm{d}^{3} r \int_{0}^{\infty} \mathrm{d}\xi \left\{ \frac{\xi^{2}}{c^{2}} \nabla \cdot \mathbf{G}(\mathbf{r}, \mathbf{r}', i\xi) \right. \\ &\left. -\mathrm{Tr} \left[\mathbf{I} \times \left(\nabla \times \nabla \times + \frac{\xi^{2}}{c^{2}} \right) \mathbf{G}(\mathbf{r}, \mathbf{r}', i\xi) \times \overleftarrow{\nabla}' \right] \right\}_{\mathbf{r}' \to \mathbf{r}} \end{aligned}$$

- \Rightarrow emission of virtual photons
- [1] Raabe and Welsch Phys. Rev. A 73, 1 063822 (2006)

Result for amplifying media

 $\textbf{F} = \textbf{F}^{r} + \textbf{F}^{nr}$

$$\begin{aligned} \mathbf{F}^{\mathrm{r}} &= -\frac{2\hbar}{\pi c^2} \int_{V} \mathrm{d}^3 r \int_{0}^{\infty} \mathrm{d}\omega \omega^2 \int \mathrm{d}^3 \mathbf{s} \mathrm{Im} \, \varepsilon(\mathbf{s}, \omega) \Theta[-\mathrm{Im} \, \varepsilon(\mathbf{s}, \omega)] \\ &\times \mathrm{Re} \left\{ \omega^2 / c^2 \boldsymbol{\nabla} \cdot \mathbf{G}(\mathbf{r}, \mathbf{s}, \omega) \cdot \mathbf{G}^*(\mathbf{s}, \mathbf{r}', \omega) \right. \\ &+ \mathrm{Tr} \left[\mathbf{I} \times \left(\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times -\omega^2 / c^2 \right) \mathbf{G}(\mathbf{r}, \mathbf{s}, \omega) \cdot \mathbf{G}^*(\mathbf{s}, \mathbf{r}', \omega) \times \overleftarrow{\boldsymbol{\nabla}}' \right] \right\}_{\mathbf{r}' \to \mathbf{r}} \end{aligned}$$

Result for amplifying media

$$\mathbf{F} = \mathbf{F}^{\mathrm{r}} + \mathbf{F}^{\mathrm{nr}}$$

$$\begin{aligned} \mathbf{F}^{\mathrm{r}} &= -\frac{2\hbar}{\pi c^2} \int_{V} \mathrm{d}^3 r \int_{0}^{\infty} \mathrm{d}\omega \omega^2 \int \mathrm{d}^3 \mathbf{s} \mathrm{Im} \, \varepsilon(\mathbf{s}, \omega) \Theta[-\mathrm{Im} \, \varepsilon(\mathbf{s}, \omega)] \\ &\times \mathrm{Re} \left\{ \omega^2 / c^2 \boldsymbol{\nabla} \cdot \mathbf{G}(\mathbf{r}, \mathbf{s}, \omega) \cdot \mathbf{G}^*(\mathbf{s}, \mathbf{r}', \omega) \right. \\ &+ \mathrm{Tr} \left[\mathbf{I} \times \left(\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times -\omega^2 / c^2 \right) \mathbf{G}(\mathbf{r}, \mathbf{s}, \omega) \cdot \mathbf{G}^*(\mathbf{s}, \mathbf{r}', \omega) \times \overleftarrow{\boldsymbol{\nabla}}' \right] \right\}_{\mathbf{r}' \to \mathbf{r}} \end{aligned}$$

 \Rightarrow emission of real photons [1]

[1] Sambale, Welsch, Buhmann, Ho, Phys. Rev A 80 (5), 051801(R) (2009)

Force on dilute amplifying bodies

Expand to (leading) linear order in $\varepsilon(\mathbf{r},\omega)-1$ ($\mathbf{r}\in V$),

Force on dilute amplifying bodies

Expand to (leading) linear order in $arepsilon(\mathbf{r},\omega)-1$ ($\mathbf{r}\in V$),

$$\varepsilon(\omega) - 1 = \frac{\eta \alpha_n(\omega)}{\varepsilon_0}, \ \alpha_n(\omega) = \lim_{\epsilon \to 0} \frac{1}{3\hbar} \sum_k \left[\frac{|\mathbf{d}_{nk}|^2}{\omega + \omega_{kn} + i\epsilon} - \frac{|\mathbf{d}_{nk}|^2}{\omega - \omega_{kn} + i\epsilon} \right]$$

Force on dilute amplifying bodies

Expand to (leading) linear order in $arepsilon({f r},\omega)-1$ (${f r}\in V$),

$$\varepsilon(\omega) - 1 = \frac{\eta \alpha_n(\omega)}{\varepsilon_0}, \ \alpha_n(\omega) = \lim_{\epsilon \to 0} \frac{1}{3\hbar} \sum_k \left[\frac{|\mathbf{d}_{nk}|^2}{\omega + \omega_{kn} + i\epsilon} - \frac{|\mathbf{d}_{nk}|^2}{\omega - \omega_{kn} + i\epsilon} \right]$$

$$\mathbf{F} = \int \mathrm{d}^3 r \eta \boldsymbol{\nabla} U_n(\mathbf{r})$$

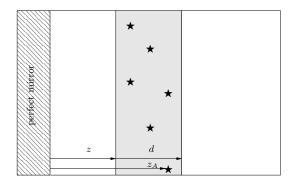
Casimir–Polder potential: $U_n(\mathbf{r}) = U_n^{\mathrm{nr}}(\mathbf{r}) + U_n^{\mathrm{r}}(\mathbf{r})$

$$U_n^{\rm nr}(\mathbf{r}) = \frac{\hbar\mu_0}{2\pi} \int_0^\infty \mathrm{d}\xi \xi^2 \alpha_n(i\xi) \mathrm{Tr}\overline{\mathbf{G}}^{(1)}(\mathbf{r},\mathbf{r},i\xi)$$

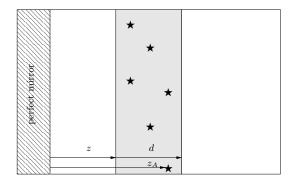
$$U_n^{\rm r}(\mathbf{r}) = -\frac{\mu_0}{3} \sum_k \Theta(\omega_{nk}) \omega_{nk}^2 |\mathbf{d}_{nk}|^2 \mathrm{TrRe} \overline{\mathbf{G}}^{(1)}(\mathbf{r}, \mathbf{r}, \omega_{nk})$$

 $\overline{\mathbf{G}}$: Green tensor in the absence of the amplifying body

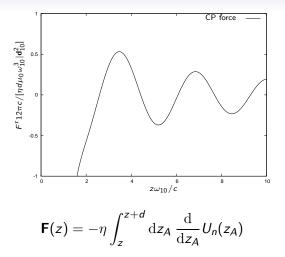
Example: Sample of excited gas atoms near a perfect mirror



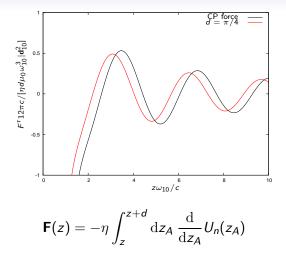
Example: Sample of excited gas atoms near a perfect mirror



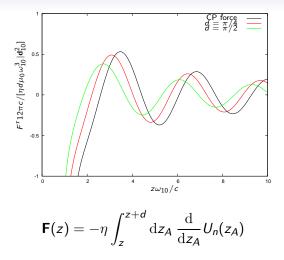
$$\mathbf{F}(z) \approx \mathbf{F}^{\mathrm{r}}(z) = \frac{\mu_0}{3} \eta \omega_{10}^2 |\mathbf{d}_{10}|^2 \frac{c^2}{32\pi\omega_{10}^2 z_A^3} \\ \times \left[(2 - 4\omega_{10}^2/c^2 z_A^2) \cos(2\omega_{10} z_A/c) + 4\omega_{10} z_A/c \sin(2\omega_{10} z_A/c) \right]_{z_A = z}^{z_A = z+d} \mathbf{e}_z$$



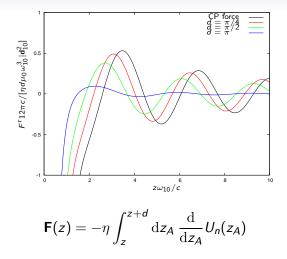
- Oscillations in retarded regime
- Attractive behaviour in nonretarded regime for metals



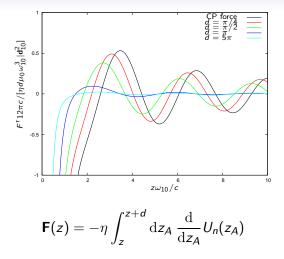
- Oscillations in retarded regime
- Attractive behaviour in nonretarded regime for metals



- Oscillations in retarded regime
- Attractive behaviour in nonretarded regime for metals



- Oscillations in retarded regime
- Attractive behaviour in nonretarded regime for metals



- Oscillations in retarded regime
- Attractive behaviour in nonretarded regime for metals

Summary: Optical dilute amplifying body

- Nonresonant component always attractive but dominated by
- Resonant component:
 - nonretarded regime power law $1/d^3$: metals \rightarrow attraction; but for dielectrica repulsion possible $F_{res} \propto \operatorname{Re} rac{|\varepsilon|^2 1}{|\varepsilon + 1|^2}$
 - retarded regime: force oscillates
- Now: Going beyond optically dilute limit

Motivation

Field quantization

Casimir force in the presence of amplification

Casimir force on an amplifying plate

Summary and Outlook

Stress tensor approach

Velocity-independent system: Casimir force = surface integral over the outer boundaries of the body (volume V)

$$\mathbf{F} = \int_{\partial V} \mathrm{d} \mathbf{a} \cdot \mathbf{T}(\mathbf{r})$$

Stress tensor approach

Velocity-independent system: Casimir force = surface integral over the outer boundaries of the body (volume V)

$$\mathbf{F} = \int_{\partial V} \mathrm{d} \mathbf{a} \cdot \mathbf{T}(\mathbf{r})$$

with stress tensor

$$\begin{aligned} \mathbf{T}(\mathbf{r}) &= \lim_{\mathbf{r}' \to \mathbf{r}} \mathbf{T}(\mathbf{r}, \mathbf{r}') \\ &= \varepsilon_0 \left\langle \{0\} | \,\hat{\mathbf{E}}(\mathbf{r}) \hat{\mathbf{E}}(\mathbf{r}') \left| \{0\} \right\rangle + \mu_0^{-1} \left\langle \{0\} | \,\hat{\mathbf{B}}(\mathbf{r}) \hat{\mathbf{B}}(\mathbf{r}') \left| \{0\} \right\rangle \\ &- \frac{1}{2} \left(\varepsilon_0 \left\langle \{0\} | \,\hat{\mathbf{E}}(\mathbf{r}) \cdot \hat{\mathbf{E}}(\mathbf{r}') \left| \{0\} \right\rangle + \mu_0^{-1} \left\langle \{0\} | \,\hat{\mathbf{B}}(\mathbf{r}) \cdot \hat{\mathbf{B}}(\mathbf{r}') \left| \{0\} \right\rangle \right) \mathbf{I} \end{aligned}$$

Motivation

Field correlation functions

$$\begin{split} \langle 0|\hat{\mathbf{E}}(\mathbf{r})\hat{\mathbf{E}}(\mathbf{r}')|0\rangle &= \frac{\hbar}{\pi\varepsilon_0} \int_0^\infty \mathrm{d}\omega \frac{\omega^2}{c^2} \mathrm{Im} \mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \\ &- 2\frac{\hbar}{\pi\varepsilon_0} \int \mathrm{d}^3 \mathbf{s} \int_0^\infty \mathrm{d}\omega \frac{\omega^4}{c^4} \mathrm{Im}\,\varepsilon(\mathbf{s},\omega) \\ &\times \mathrm{Re}[\mathbf{G}(\mathbf{r},\mathbf{s},\omega)\cdot\mathbf{G}^*(\mathbf{s},\mathbf{r}',\omega)]\Theta[-\mathrm{Im}\,\varepsilon(\mathbf{s},\omega)] \end{split}$$

Motivation

Field correlation functions

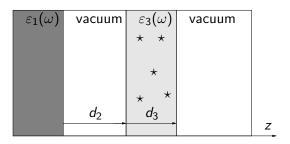
$$\begin{split} \langle 0|\hat{\mathbf{E}}(\mathbf{r})\hat{\mathbf{E}}(\mathbf{r}')|0\rangle &= \frac{\hbar}{\pi\varepsilon_0} \int_0^\infty \mathrm{d}\omega \frac{\omega^2}{c^2} \mathrm{Im} \mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \\ &- 2\frac{\hbar}{\pi\varepsilon_0} \int \mathrm{d}^3 \mathbf{s} \int_0^\infty \mathrm{d}\omega \frac{\omega^4}{c^4} \mathrm{Im}\,\varepsilon(\mathbf{s},\omega) \\ &\times \mathrm{Re}[\mathbf{G}(\mathbf{r},\mathbf{s},\omega)\cdot\mathbf{G}^*(\mathbf{s},\mathbf{r}',\omega)]\Theta[-\mathrm{Im}\,\varepsilon(\mathbf{s},\omega)] \end{split}$$

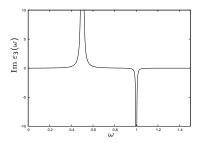
$$\begin{split} \langle 0|\hat{\mathbf{B}}(\mathbf{r})\hat{\mathbf{B}}(\mathbf{r}')|0\rangle &= -\frac{\hbar}{\pi\varepsilon_0}\int_0^\infty \mathrm{d}\omega \frac{1}{c^2}\boldsymbol{\nabla}\times \mathrm{Im}\mathbf{G}(\mathbf{r},\mathbf{r}',\omega)\times\overleftarrow{\boldsymbol{\nabla}}'\\ &- 2\frac{\hbar}{\pi\varepsilon_0}\int \mathrm{d}^3 s \int_0^\infty \mathrm{d}\omega \frac{\omega^2}{c^4} \mathrm{Im}\,\varepsilon(\mathbf{s},\omega)\\ &\times \mathrm{Re}[\boldsymbol{\nabla}\times\mathbf{G}(\mathbf{r},\mathbf{s},\omega)\cdot\mathbf{G}^*(\mathbf{s}',\mathbf{r}',\omega)\times\overleftarrow{\boldsymbol{\nabla}}']\Theta[-\mathrm{Im}\,\varepsilon(\mathbf{s},\omega)] \end{split}$$

Setup

$\varepsilon_1(\omega)$	vacuum	$\varepsilon_3(\omega)$ * *	vacuum	
		* *		
		+		
		^		
	d_2	* * da		
		<i>a</i> ₃		Z

Setup





$$\varepsilon_{3}(\omega) = 1 - \frac{\omega_{pa}^{2}}{\omega_{ta}^{2} - \omega^{2} - i\omega\gamma_{a}} + \frac{\omega_{pb}^{2}}{\omega_{tb}^{2} - \omega^{2} - i\omega\gamma_{b}}$$

Nonresonant contribution

$$\mathbf{f} = -\frac{\hbar}{2\pi^2} \int_0^\infty \mathrm{d}\xi \int_0^\infty \mathrm{d}k^{\parallel} k^{\parallel} \kappa^{\perp} \sum_{\sigma=s,p} \frac{r_{2+}^{\sigma} r_{2-}^{\sigma} e^{-2\kappa^{\perp} d_2}}{1 - r_{2-}^{\sigma} r_{2+}^{\sigma} e^{-2\kappa^{\perp} d_2}}$$

Nonresonant contribution

$$\mathbf{f} = -\frac{\hbar}{2\pi^2} \int_0^\infty \mathrm{d}\xi \int_0^\infty \mathrm{d}k^{\|}k^{\|}\kappa^{\perp} \sum_{\sigma=s,p} \frac{r_{2+}^{\sigma} r_{2-}^{\sigma} e^{-2\kappa^{\perp} d_2}}{1 - r_{2-}^{\sigma} r_{2+}^{\sigma} e^{-2\kappa^{\perp} d_2}}$$

Ideal case: Amplification for all frequencies: $0 < \varepsilon_3(i\xi) < 1 \ \forall \xi \Rightarrow \kappa^{\perp}(i\xi) = \sqrt{\varepsilon(i\xi)\xi^2/c^2 + k^{\parallel^2}}$ no ambiguity

Nonresonant contribution

$$\mathbf{f} = -\frac{\hbar}{2\pi^2} \int_0^\infty \mathrm{d}\xi \int_0^\infty \mathrm{d}k^{\parallel} k^{\parallel} \kappa^{\perp} \sum_{\sigma=s,p} \frac{r_{2+}^{\sigma} r_{2-}^{\sigma} e^{-2\kappa^{\perp} d_2}}{1 - r_{2-}^{\sigma} r_{2+}^{\sigma} e^{-2\kappa^{\perp} d_2}}$$

Ideal case: Amplification for all frequencies: $0 < \varepsilon_3(i\xi) < 1 \ \forall \xi \Rightarrow \kappa^{\perp}(i\xi) = \sqrt{\varepsilon(i\xi)\xi^2/c^2 + k^{\parallel^2}}$ no ambiguity Nonretarded limit: $d_3 \to \infty$

$$\mathbf{f}^{nret} = \frac{\hbar}{8\pi^2 d_2^3} \int_0^\infty \mathrm{d}\xi \mathrm{Li}_3 \Big[\frac{1 - \varepsilon_3(i\xi)}{\varepsilon_3(i\xi) + 1} \frac{\varepsilon_1(i\xi) - 1}{\varepsilon_1(i\xi) + 1} \Big] \mathbf{e}_z$$

Retarded limit ($d_3 \rightarrow \infty$): $\varepsilon_{1,3}$ static values

$$\begin{aligned} \mathbf{f}^{ret} &= \frac{3\hbar c}{16\pi^2 d_2^4} \int_1^\infty \frac{\mathrm{d}v}{v^2} \Big\{ \mathrm{Li}_4 \Big[\frac{v - \sqrt{\varepsilon_1 - 1 + v^2}}{v + \sqrt{\varepsilon_1 - 1 + v^2}} \frac{\sqrt{\varepsilon_3 - 1 + v^2} - v}{v + \sqrt{\varepsilon_3 - 1 + v^2}} \Big] \\ &+ \mathrm{Li}_4 \Big[\frac{\varepsilon_1 v - \sqrt{\varepsilon_1 - 1 + v^2}}{\varepsilon_1 v + \sqrt{\varepsilon_1 - 1 + v^2}} \frac{\sqrt{\varepsilon_3 - 1 + v^2} - \varepsilon_3 v}{\varepsilon_3 v + \sqrt{\varepsilon_3 - 1 + v^2}} \Big] \Big\} \mathbf{e}_z \end{aligned}$$

 \Rightarrow If amplification is present in a sufficiently large frequency regime the nonresonant component becomes repulsive.

Nonretarded limit (preliminary result)

Set $k^{\perp} = ik^{\parallel}$ in all layers ($k^{\parallel} \in \mathbb{R}$, single-layer reflection independent of wave vector, only *p*-polarization)

 $\mathbf{f} = \mathbf{f}_{\textit{nres}}^{\textit{nret}} + \mathbf{f}_{\textit{res}}^{\textit{nret}}$

$$\mathbf{f}_{nres}^{nret} = -\frac{\hbar}{2\pi^2} \int_0^\infty \mathrm{d}\xi \int_0^\infty \mathrm{d}k^{\|}k^{\|}^2 \frac{e^{-2k^{\|}d_2}r_{2-}^p r_{2+}^p}{1 - r_{2-}^p r_{2+}^p e^{-2k^{\|}d_2}} \mathbf{e}_z$$

$$\begin{aligned} \mathbf{f}_{res}^{nret} &= -\frac{\hbar}{2\pi^2} \int \mathrm{d}\omega \Theta[-\mathrm{Im}\,\varepsilon_3(\omega)] |\mathrm{Im}\,\varepsilon_3(\omega)| \int_0^\infty \mathrm{d}k^{\parallel}k^{\parallel 2} \\ &\times \mathrm{Re}\,r_{21}^p |t_{23}^p|^2 \frac{\mathrm{e}^{-2k^{\parallel}d_2}}{|1+r_{3-}^p r_{23}^p \mathrm{e}^{-2k^{\parallel}d_3}|^2 |1-r_{21}^p r_{23}^p \mathrm{e}^{-2k^{\parallel}d_2}|^2} \\ &\times \left[(1-\mathrm{e}^{-2k^{\parallel}d_3}) + |r_{23}^p|^2 (\mathrm{e}^{-2k^{\parallel}d_3} - \mathrm{e}^{-4k^{\parallel}d_3}) \right] \mathbf{e}_z \end{aligned}$$

Approximation: $d_3 \rightarrow \infty$, neglect of multiple reflections

$$\mathbf{f}_{res}^{nret} = -\frac{\hbar}{2\pi^2 d_2^3} \int \mathrm{d}\omega \Theta[-\mathrm{Im}\,\varepsilon_3(\omega)] |\mathrm{Im}\,\varepsilon_3(\omega)| \frac{|\varepsilon_3(\omega)|(|\varepsilon_1(\omega)|^2 - 1)}{|\varepsilon_1(\omega) + 1|^2 |\varepsilon_3(\omega) + 1|^2}$$

 \Rightarrow repulsion possible Perfect mirror:

$$\mathbf{f}_{res}^{nret} = -\frac{\hbar}{2\pi^2 d_2^3} \int \mathrm{d}\omega \Theta[-\mathrm{Im}\,\varepsilon_3(\omega)] |\mathrm{Im}\,\varepsilon_3(\omega)| \frac{|\varepsilon_3(\omega)|}{|\varepsilon_3(\omega)+1|^2}$$

 \Rightarrow attractive

Power law in agreement with resonant Casimir–Polder force on excited atom

- Nonresonant contribution: can be repulsive for large gain-assisted frequency regime but is expected to be dominated by
- Resonant contribution
 - Nonretarded limit: attraction for metals, for dielectrica repulsion possible
 - Open: Retarded limit \Rightarrow discuss choice of the wave vector Expect: Oscillations in consisteny with the optically dilute case

Problem: Amplification in limited frequency regime, expect resonant force components, $\varepsilon_3(\omega)$ complex and $k_3^{\perp}(\omega) = \sqrt{\varepsilon_3 \omega^2 / c^2 - k^{\parallel 2}}$ Physical requirements:

• Agreement with with bulk amplifying medium

Problem: Amplification in limited frequency regime, expect resonant force components, $\varepsilon_3(\omega)$ complex and $k_3^{\perp}(\omega) = \sqrt{\varepsilon_3 \omega^2 / c^2 - k^{\parallel 2}}$ Physical requirements:

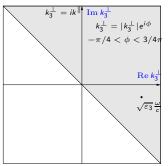
- Agreement with with bulk amplifying medium
- Green tensor should be finite, evanescent waves should decay, propagating waves should be amplified

Problem: Amplification in limited frequency regime, expect resonant force components, $\varepsilon_3(\omega)$ complex and $k_3^{\perp}(\omega) = \sqrt{\varepsilon_3 \omega^2 / c^2 - k^{\parallel 2}}$ Physical requirements:

- Agreement with with bulk amplifying medium
- Green tensor should be finite, evanescent waves should decay, propagating waves should be amplified
- Chosen contour should avoid branch cut

Problem: Amplification in limited frequency regime, expect resonant force components, $\varepsilon_3(\omega)$ complex and $k_3^{\perp}(\omega) = \sqrt{\varepsilon_3 \omega^2 / c^2 - k^{\parallel 2}}$ Physical requirements:

- Agreement with with bulk amplifying medium
- Green tensor should be finite, evanescent waves should decay, propagating waves should be amplified
- Chosen contour should avoid branch cut



Motivation

Field quantization

Casimir force in the presence of amplification

Casimir force on an amplifying plate

Summary and Outlook

 Casimir force on a linear partially amplifying body has resonant force components ⇒ repulsion for dielectrica possible in the nonretarded limit

- Casimir force on a linear partially amplifying body has resonant force components \Rightarrow repulsion for dielectrica possible in the nonretarded limit
- Contact to Casimir–Polder forces: force on excited atoms $\xrightarrow{\sum}$ force on dilute amplifying body

- Casimir force on a linear partially amplifying body has resonant force components ⇒ repulsion for dielectrica possible in the nonretarded limit
- Contact to Casimir–Polder forces: force on excited atoms $\xrightarrow{\Sigma}$ force on dilute amplifying body
- To be done: Going beyond nonretarded limit

[1] Sambale, Welsch, Buhmann, Ho, J. Opt. Spec., 108, 3 (2010)

- Casimir force on a linear partially amplifying body has resonant force components ⇒ repulsion for dielectrica possible in the nonretarded limit
- Contact to Casimir–Polder forces: force on excited atoms $\xrightarrow{\sum}$ force on dilute amplifying body
- To be done: Going beyond nonretarded limit
- Our approach can be expanded to include magnetoelectric bodies $[1] \Rightarrow$ lefthandedness, metamaterials
- [1] Sambale, Welsch, Buhmann, Ho, J. Opt. Spec., 108, 3 (2010)