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Short abstract:

* We derive and calculate the Casimir interaction between two
doped or undoped Graphene sheets at zero temperature.

* We derive the Casimir interaction between a doped or undoped
Graphene sheet and a substrate. We calculate the interaction
for a gold substrate.

* We find a separation dependence that differs from that

predicted by Langbein.



Outline of the talk

Brief description of Graphene, its band structure and dielectric
function.

Brief description of the van der Waals and Casimir interaction.
Expected distance dependence of the interaction.

How to derive the interaction.

Results

Summary and conclusions



Brief description of Graphene, its band
structure and dielectric function
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Dielectric function of virgin Graphene

e(q.0)=1-v"(q)2(q.0)=1+0a(q,0)= 2h \/Vq _

(0.0)=1-7"(g)7 (4.0) = 1+e'(q0) =1+ T

vP(q)=2me’/q



Dielectric function for doped Graphene
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Brief description of the van der Waals
and Casimir interaction

* The vdW and Casimir interaction energy is the shift of the
total zero-point energy of the system when interaction is
turned on.

* For planar structures it can be written as
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is the condition for electromagnetic normal modes



Van der Waals versus Casimir

The van der Waals result is obtained if one neglects retardation effects, 1.e.
lets the speed of light be infinite.

Keeping the finite speed of light results in van der Waals interaction for
small separations and Casimir interaction at large.

On a log-log plot of energy versus separation the ordinary behavior is that
there are two asymptotes, the vdW and Casimir asymptotes.

They are both straight lines that cross at a certain separation. The full result
follows the vdW asymptote for small separations, then makes a smooth
transition to the Casimir asymptote and follows that for large separations.
The Casimir asymptote has a steeper negative slope.

Graphene has a very odd behavior: The two asymptotes have the same
slope and the vdW asymptote never crosses the Casimir asymptote. The
retardation effects are negligible.
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Expected distance dependence of the
interaction.

* One way to find fast results for the van der Waals and Casimir
interactions between objects of various shapes is to sum over
pair interactions.

* According to Langbein® one finds the correct separation
dependence but the overall strength 1s not always right.

*[Langbein D., Theory of Van der Waals Attraction,
in Springer Tracts Mod. Phys., Vol. 72 (Springer, New York) 1974]



Langbein predictions

Half space — half space d2 d3
Film-half space d3 d-4
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Two thin metal films
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* Thus we found that the Langbein prediction failed for
two 2D metallic films.

 We further found that it failed for two thin metal
films.

* Will it work for two graphene sheets?



How to derive the interaction.

* This can be done 1n different ways

* One 1s to use many-body theory and use
Feynman diagrams.

* One 1s to use the electromagnetic normal
modes



For 2D-sheets the interaction 1s the
inter—sheet correlation—energy
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Sernelius and Bjork, Phys. Rev. B, 57 6592 (1998)



Result

dw dgqIn+

l—e

—2qd

o' (q,0)

1+a'(q.0)




Normal mode derivation

 [et us assume that we have an induced carrier
distribution, p, (q,w)in sheet number 1

* This gives rise to the potential
v(q,a)) = VZD(q)Pl(q,a)) in sheet number 1,

and exp(—qd)v*”(q)p,(q,®) in sheet number 2.

* The resulting potential in sheet 2 after screening by
the carriers 1s

exp(-gd)v*” (4)p (0.0)/[1+ o (q.0)]



* This gives rise to an induced carrier
distribution 1n sheet 2, (0.0
)= 0)e 4P Pi\q,W |
p.(q.0)=x(q.0) (Q)[1+(x(q,w)]
In complete analogy, this carrier distribution in

sheet 2 gives rise to a carrier distribution in
sheet 1

p,(q.0)
1+a(qo)]

p,(q.0)=x(q.0)e*v*"(q)



The mode condition

* To find the condition for self-sustained fields,
normal modes, we let this induced carrier
density in sheet 1 be the carrier density we
started from. This leads to
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Two parallel 2D sheets

dw dgqln-

—2qd

" led)

1+ O('(q,a))_




Undoped Graphene
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Graphene-Graphene interaction
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Contribution from the doping carriers
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One 2D sheet parallel to a substrate

* Now we start from a mirror charge in the
substrate: p,(q,m)

* This gives rise to an induced charge density in
the 2D sheet

p.(q.0)
[ 1+a(qo)]|

Note the distance 1s now 2d. The mirror charge
1S at a distance d from the surface.

—2qd 2D

p,(q.0)=x(q.0)e V" (g)




The mode condition

* This charge density gives rise to an 1mage
charge density

e (w)-1

e (w)+1

pi(4.0)=—-p,(q.0)

Letting this be the image charge we started
from gives

1_6—26161 OC((],CO) ES(C())—IZO.

1+o(q.0) e (w)+1




One 2D sheet parallel to a substrate




Graphene —Gold-substrate interaction
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Predictions and outcome

Half space — half space d d3
Film-half space d3 d4
Film-film d4 d-
2D metal — metal half space ds2 (@ d3
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(a) Bostrom and Sernelius, Phys. Rev. B, 61 2204 (2000).

(b) Sernelius and Bjork, Phys. Rev. B, 57 6592 (1998).

(c) Bo E. Sernelius, EPL, 95 (2011) 57003. (Present)

(d) Predicted by Dobson et al., Phys. Rev. Lett., 96 073201 (2006).



Summary and conclusions

We have derived the non-retarded Casimir interaction (van der Waals
interaction) between two free standing graphene sheets. Numerical results
were presented for undoped and for doped graphene. We found a d-3
dependence for the undoped case and a d'? dependence for the doped at
large separations.

We furthermore derived the interaction between a graphene sheet and a
substrate. Numerical results were presented for a doped and undoped
graphene sheet above a gold substrate.

We found no simple power law.

To be noted 1s that there were no signs of spatial dispersion effects in the
undoped graphene geometries.



