

Casimir Effects in Graphene Systems

Bo E. Sernelius

Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden

Bo E. Sernelius, EPL, 95 (2011) 57003.

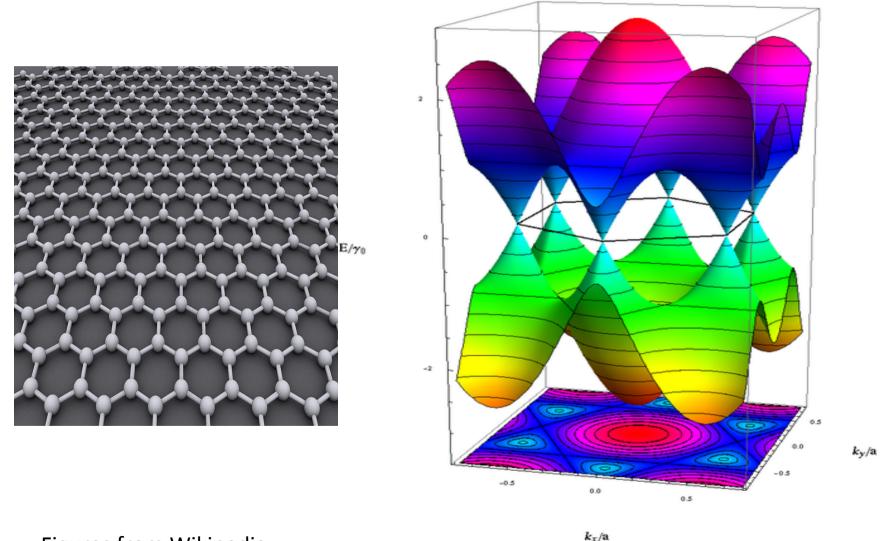
Short abstract:

- We derive and calculate the Casimir interaction between two doped or undoped Graphene sheets at zero temperature.
- We derive the Casimir interaction between a doped or undoped Graphene sheet and a substrate. We calculate the interaction for a gold substrate.
- We find a separation dependence that differs from that predicted by Langbein.

Outline of the talk

- Brief description of Graphene, its band structure and dielectric function.
- Brief description of the van der Waals and Casimir interaction.
- Expected distance dependence of the interaction.
- How to derive the interaction.
- Results
- Summary and conclusions

Brief description of Graphene, its band structure and dielectric function



Dielectric function of virgin Graphene

$$\varepsilon(\mathbf{q},\omega) = 1 - v^{2D}(q)\chi(\mathbf{q},\omega) = 1 + \alpha(\mathbf{q},\omega) = 1 + \frac{\pi e^2}{2\hbar} \frac{q}{\sqrt{v^2 q^2 - \omega^2}};$$

$$\varepsilon'(\mathbf{q},\omega) = 1 - v^{2D}(q)\chi'(\mathbf{q},\omega) = 1 + \alpha'(\mathbf{q},\omega) = 1 + \frac{\pi e^2}{2\hbar} \frac{q}{\sqrt{v^2 q^2 + \omega^2}};$$

$$v^{2D}(q) = 2\pi e^2/q$$

Dielectric function for doped Graphene

$$\chi'(\mathbf{q},\omega) = \chi(\mathbf{q},i\omega) =$$

$$= -D_0 \left\{ 1 + \frac{x^2}{4\sqrt{y^2 + x^2}} \left[\pi - \operatorname{atan} \left(\frac{2\left\{ \left[x^2(y^2 - 1) + \left(y^2 + 1 \right)^2 \right]^2 + \left(2yx^2 \right)^2 \right\}^{1/4} \sin \left\{ \frac{1}{2} \operatorname{atan} \left[\frac{2yx^2}{x^2(y^2 - 1) + \left(y^2 + 1 \right)^2} \right] \right\} \right\} - \frac{\sqrt{-2x^2(y^2 - 1) - 2\left(y^4 - 6y^2 + 1 \right) + 2\left(y^2 + 1 \right) \sqrt{x^4 + 2x^2(y^2 - 1) + \left(y^2 + 1 \right)^2}}}{x^2} \right] \right\}; \ 0 \le \operatorname{atan} < \pi$$

$$D_0 = \frac{gE_F}{2\pi(\hbar v)^2} = \frac{gk_F^2}{2\pi E_F} = \frac{gn}{2E_F} = \sqrt{\frac{gn}{\pi\hbar^2 v^2}}$$
 (Density of states at the Fermi level).

$$E^{\pm} = \pm v\hbar k; \quad E_F = \hbar v k_F$$

$$x = q/2k_F; \quad y = \hbar\omega/2E_F$$

$$\alpha(\mathbf{q},i\omega) = -\frac{2\pi e^2}{q} \chi(\mathbf{q},i\omega)$$

Brief description of the van der Waals and Casimir interaction

- The vdW and Casimir interaction energy is the shift of the total zero-point energy of the system when interaction is turned on.
- For planar structures it can be written as

$$E = \hbar \int \frac{d^2q}{\left(2\pi\right)^2} \int_0^\infty \frac{d\omega}{2\pi} \ln\left[f_{\mathbf{q}}(i\omega)\right],$$
 where

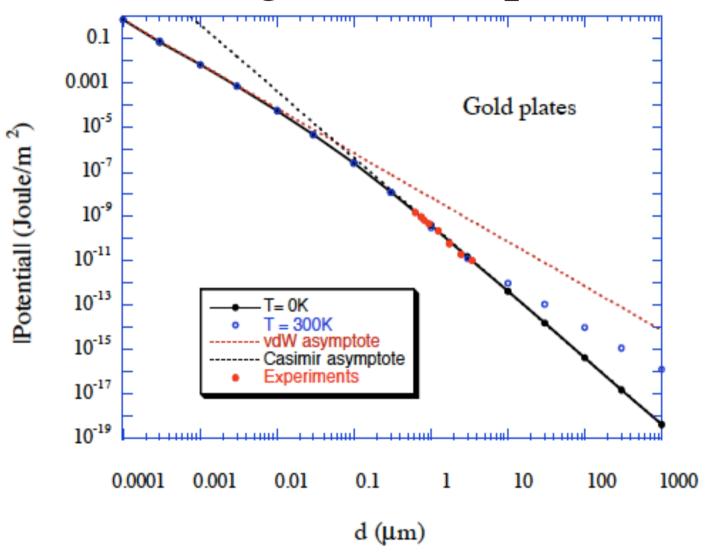
$$f_{\mathbf{q}}(\boldsymbol{\omega}_{\mathbf{q}}) = 0$$

is the condition for electromagnetic normal modes

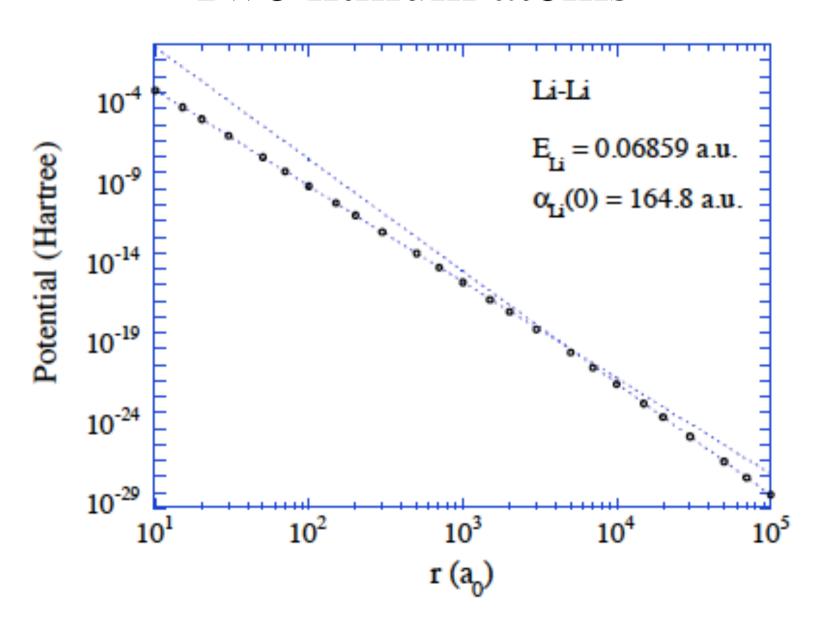
Van der Waals versus Casimir

- The van der Waals result is obtained if one neglects retardation effects, i.e. lets the speed of light be infinite.
- Keeping the finite speed of light results in van der Waals interaction for small separations and Casimir interaction at large.
- On a log-log plot of energy versus separation the ordinary behavior is that there are two asymptotes, the vdW and Casimir asymptotes.
- They are both straight lines that cross at a certain separation. The full result follows the vdW asymptote for small separations, then makes a smooth transition to the Casimir asymptote and follows that for large separations. The Casimir asymptote has a steeper negative slope.
- <u>Graphene</u> has a very odd behavior: The two asymptotes have the same slope and the vdW asymptote never crosses the Casimir asymptote. <u>The retardation effects are negligible</u>.

Two gold half spaces



Two lithium atoms



Expected distance dependence of the interaction.

• One way to find fast results for the van der Waals and Casimir interactions between objects of various shapes is to sum over pair interactions.

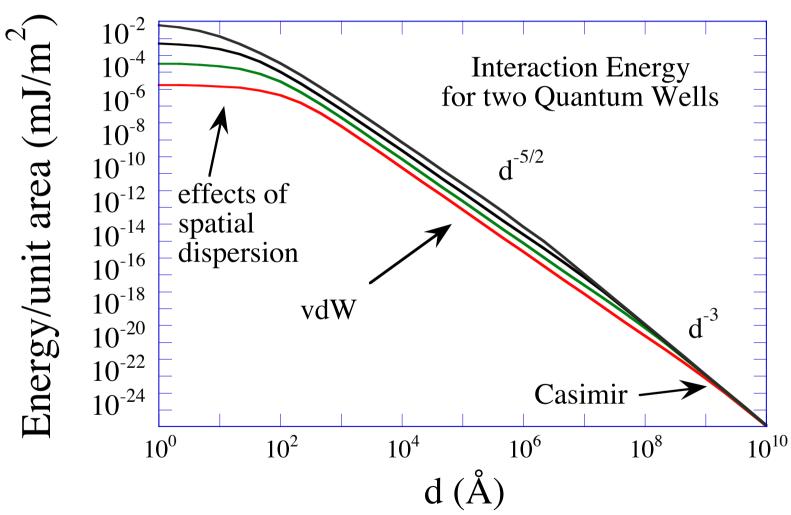
• According to Langbein* one finds the correct separation dependence but the overall strength is not always right.

*[Langbein D., *Theory of Van der Waals Attraction*, in Springer Tracts Mod. Phys., Vol. 72 (Springer, New York) 1974]

Langbein predictions

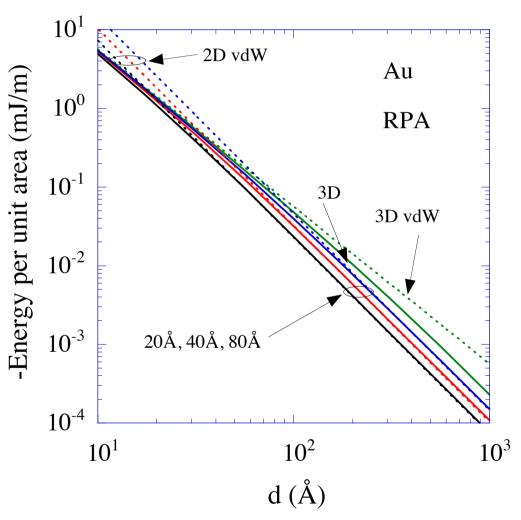
Langbein	Van der Waals	Casimir
Half space – half space	d ⁻²	d ⁻³
Film-half space	d ⁻³	d ⁻⁴
Film-film	d ⁻⁴	d ⁻⁵

Two 2D metal films



Bo E. Sernelius and P. Björk, Phys. Rev. B **57**, 6592 (1998)

Two thin metal films



M. Boström and Bo E. Sernelius, Phys. Rev. B 61, 2204 (2000)

• Thus we found that the Langbein prediction failed for two 2D metallic films.

• We further found that it failed for two thin metal films.

• Will it work for two graphene sheets?

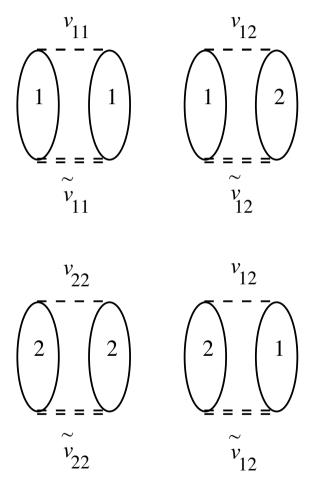
How to derive the interaction.

• This can be done in different ways

• One is to use many-body theory and use Feynman diagrams.

One is to use the electromagnetic normal modes

For 2D-sheets the interaction is the inter-sheet correlation-energy



Sernelius and Björk, *Phys. Rev. B*, **57** 6592 (1998)

Result

$$E_c(d) = \frac{\hbar}{(2\pi)^2} \int_0^\infty \int_0^\infty d\omega \, dq \, d\ln \left\{ 1 - e^{-2qd} \left[\frac{\alpha'(q,\omega)}{1 + \alpha'(q,\omega)} \right]^2 \right\}$$

Normal mode derivation

- Let us assume that we have an induced carrier distribution, $\rho_1(\mathbf{q},\omega)$ in sheet number 1
- This gives rise to the potential $v(\mathbf{q},\omega) = v^{2D}(q)\rho_1(\mathbf{q},\omega)$ in sheet number 1,
 - and $\exp(-qd)v^{2D}(q)\rho_1(\mathbf{q},\omega)$ in sheet number 2.
- The resulting potential in sheet 2 after screening by the carriers is

$$\exp(-qd)v^{2D}(q)\rho_1(\mathbf{q},\omega)/[1+\alpha(\mathbf{q},\omega)]$$

• This gives rise to an induced carrier distribution in sheet 2,

$$\rho_2(\mathbf{q},\omega) = \chi(\mathbf{q},\omega)e^{-qd}v^{2D}(q)\frac{\rho_1(\mathbf{q},\omega)}{\left[1+\alpha(\mathbf{q},\omega)\right]}.$$

In complete analogy, this carrier distribution in sheet 2 gives rise to a carrier distribution in sheet 1

$$\rho_1(\mathbf{q},\omega) = \chi(\mathbf{q},\omega)e^{-qd}v^{2D}(q)\frac{\rho_2(\mathbf{q},\omega)}{\left[1+\alpha(\mathbf{q},\omega)\right]}.$$

The mode condition

• To find the condition for self-sustained fields, normal modes, we let this induced carrier density in sheet 1 be the carrier density we started from. This leads to

$$1 - e^{-2qd} \left[\frac{\alpha(\mathbf{q}, \boldsymbol{\omega})}{1 + \alpha(\mathbf{q}, \boldsymbol{\omega})} \right]^2 = 0$$

Two parallel 2D sheets

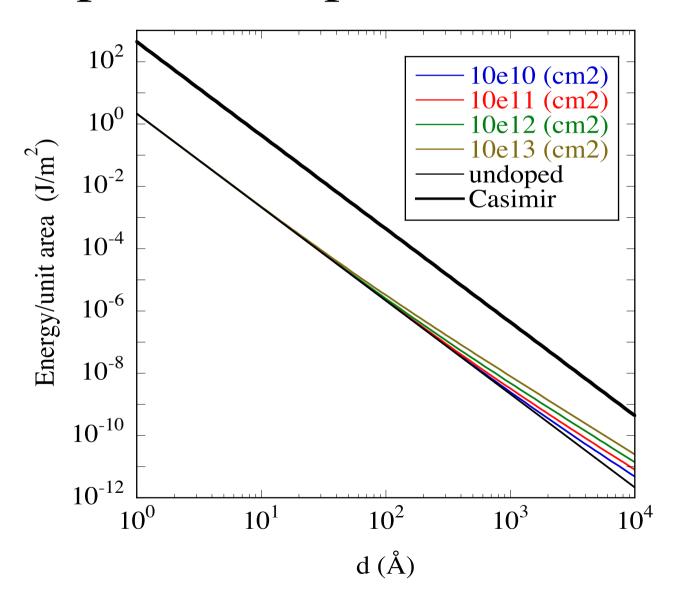
$$E_c(d) = \frac{\hbar}{(2\pi)^2} \int_0^\infty \int_0^\infty d\omega \, dq \, d\ln \left\{ 1 - e^{-2qd} \left[\frac{\alpha'(q,\omega)}{1 + \alpha'(q,\omega)} \right]^2 \right\}$$

Undoped Graphene

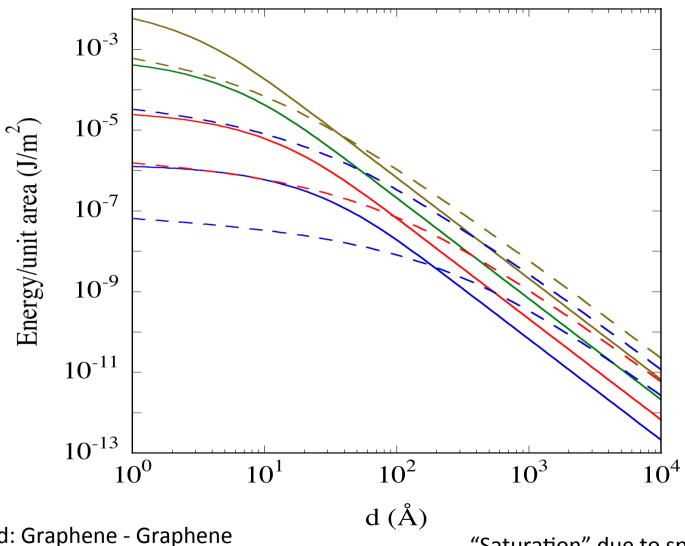
$$\alpha'(\mathbf{q},\omega) = \frac{\pi e^2}{2\hbar} \frac{q}{\sqrt{v^2 q^2 + \omega^2}} \to \alpha'\left(\frac{\mathbf{q}}{d}, \frac{\omega}{d}\right) = \alpha'(\mathbf{q},\omega)$$

$$E_{c}(d) = \frac{\hbar}{(2\pi)^{2} d^{3}} \int_{0}^{\infty} \int_{0}^{\infty} d\omega \, dq \, d\ln \left\{ 1 - e^{-2q} \left[\frac{\alpha'(q,\omega)}{1 + \alpha'(q,\omega)} \right]^{2} \right\} \propto \frac{1}{d^{3}}$$

Graphene-Graphene interaction



Contribution from the doping carriers



Dashed: Graphene - Graphene

Solid: 2D - 2D

"Saturation" due to spatial Dispersion.

One 2D sheet parallel to a substrate

- Now we start from a mirror charge in the substrate: $\rho_1(\mathbf{q},\omega)$
- This gives rise to an induced charge density in the 2D sheet

$$\rho_{2}(\mathbf{q},\omega) = \chi(\mathbf{q},\omega)e^{-2qd}v^{2D}(q)\frac{\rho_{1}(\mathbf{q},\omega)}{\left[1+\alpha(\mathbf{q},\omega)\right]}.$$

Note the distance is now 2d. The mirror charge is at a distance d from the surface.

The mode condition

• This charge density gives rise to an image charge density

$$\rho_1(\mathbf{q},\omega) = -\rho_2(\mathbf{q},\omega) \frac{\varepsilon_s(\omega) - 1}{\varepsilon_s(\omega) + 1}$$

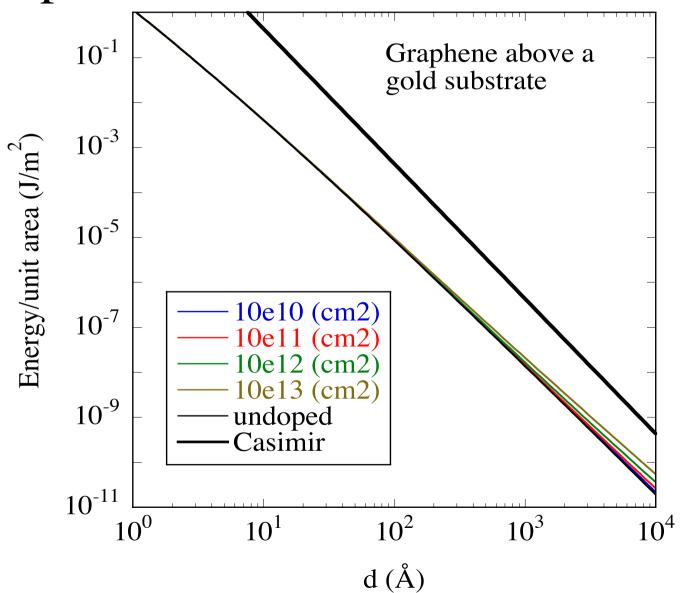
Letting this be the image charge we started from gives

$$1 - e^{-2qd} \frac{\alpha(\mathbf{q}, \boldsymbol{\omega})}{1 + \alpha(\mathbf{q}, \boldsymbol{\omega})} \frac{\varepsilon_s(\boldsymbol{\omega}) - 1}{\varepsilon_s(\boldsymbol{\omega}) + 1} = 0.$$

One 2D sheet parallel to a substrate

$$E_{c}(d) = \frac{\hbar}{(2\pi)^{2}} \int_{0}^{\infty} \int_{0}^{\infty} d\omega \, dq \, d\ln \left\{ 1 - e^{-2qd} \left[\frac{\alpha'(q,\omega)}{1 + \alpha'(q,\omega)} \frac{\varepsilon_{s}'(\omega) - 1}{\varepsilon_{s}'(\omega) + 1} \right] \right\}$$

Graphene — Gold-substrate interaction



Predictions and outcome

Langbein	Van der Waals	Casimir
Half space – half space	d ⁻²	d ⁻³
Film-half space	d ⁻³	d ⁻⁴
Film-film	d ⁻⁴	d ⁻⁵
2D metal – metal half space	d ^{-5/2} (a)	d ⁻³
2D metal – 2D metal	d ^{-5/2} (a)(b)	d-3 (p)
Graphene – metal half space	No pure power law (c)	d ⁻³
Graphene – graphene	d ⁻³ (c),(d)	d ⁻³
Doped	d ^{-5/2} (c)	d ⁻³

- (a) Boström and Sernelius, Phys. Rev. B, 61 2204 (2000).
- (b) Sernelius and Björk, Phys. Rev. B, **57** 6592 (1998).
- (c) Bo E. Sernelius, EPL, **95** (2011) 57003. (Present)
- (d) Predicted by Dobson et al., Phys. Rev. Lett., 96 073201 (2006).

Summary and conclusions

- We have derived the non-retarded Casimir interaction (van der Waals interaction) between two free standing graphene sheets. Numerical results were presented for undoped and for doped graphene. We found a d⁻³ dependence for the undoped case and a d^{-5/2} dependence for the doped at large separations.
- We furthermore derived the interaction between a graphene sheet and a substrate. Numerical results were presented for a doped and undoped graphene sheet above a gold substrate.
 We found no simple power law.
- To be noted is that there were no signs of spatial dispersion effects in the undoped graphene geometries.