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I. Quantum Vacuum Repulsion

Like Casimir’s original force between
conducting plates in vacuum, Casimir forces
are usually attractive.

But repulsive Casimir forces can be achieved
in special circumstances.

These might prove useful in nanotechnology.

QFEXT119/20/11 – p.2/69



II. Multiple Scattering Technique

The multiple scattering approach starts from the
well-known formula for the vacuum energy or
Casimir energy (for simplicity here we first restrict
attention to a massless scalar field)(τ is the
“infinite” time that the configuration exists)
[Schwinger, 1975]

E =
i

2τ
Tr lnG→ i

2τ
Tr lnGG−1

0 ,

where G (G0) is the Green’s function,

(−∂2 + V )G = 1, +BC, −∂2G0 = 1.
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T -matrix

Define the T -matrix (Lippmann-Schwinger)

T = S − 1 = V (1 +G0V )−1.

If the potential has two disjoint parts,
V = V1 + V2 it is easy to derive the interaction
between the two bodies (potentials):

E12 = − i

2τ
Tr ln(1 −G0T1G0T2)

= − i

2τ
Tr ln(1 − V1G1V2G2),

where Gi = (1 +G0Vi)
−1G0, i = 1, 2.
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III. Interaction between ε, µ bodies

Consider material bodies characterized by a
permittivity ε(r) and a permeability µ(r), so we
have corresponding electric and magnetic
potentials

Ve(r) = ε(r) − 1, Vm(r) = µ(r) − 1.

Then the trace-log is (Φ0 = −1
ζ∇ × Γ0)

Tr lnΓΓ−1
0 = −Tr ln(1 − Γ0Ve) − Tr ln(1 − Γ0Vm)

−Tr ln(1 + Φ0TeΦ0Tm),

Te,m = Ve,m(1 − Γ0Ve,m)−1.
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Factorization

If we have disjoint electric bodies, the interaction
term separates out:

Tr ln (1 − Γ0(V1 + V2)) = −Tr ln(1 − Γ0T1)

−Tr ln(1 − Γ0T2) − Tr ln(1 − Γ0T1Γ0T2),

so only the latter term contributes to the
interaction energy,

Eint =
i

2
Tr ln(1 − Γ0T1Γ0T2).
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ε-µ Lifshitz force

The same is true if one body is electric and the
other magnetic,

Eint = − i

2
Tr ln(1 + Φ0T

e
1Φ0T

m
2 ).

Using this, it is easy to show that the Lifshitz
energy between a parallel dielectric and
diamagnetic slabs is

Eεµ =
1

16π3

∫
dζ

∫
d2k

[
ln

(
1 − r1r

′
2e

−2κa
)

+ ln
(
1 − r1r

′
2e

−2κa
) ]
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Repulsive Casimir force

where

ri =
κ− κi

κ+ κi
, r′i =

κ− κ′i
κ+ κ′i

,

with κ2 = k2 + ζ2, κ2
1 = k2 + εζ2, κ′1 = κ1/ε,

κ2
2 = k2 + µζ2, κ′2 = κ2/µ.

This means in the perfect reflecting limit, ε→ ∞,
µ→ ∞,

EBoyer = +
7

8

π2

720a3
,

we get Boyer’s repulsive result.
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Repulsion in Lifshitz situation

It is also well known in the
Lifshitz-Dzyaloshinskii-Pitaevskii situation of
parallel dielectric media, with the intermediate
medium having an intermediate value of the
permittivity:

ε1 > ε3 > ε2

there is a Casimir repulsion between the upper

and lower media. This was demonstrated in the

Munday-Capasso experiment.
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Munday et al, Nature 457, 170 ’09

Yellow gold-gold, blue gold-silca, both separated

by bromobenzene.
QFEXT119/20/11 – p.10/69



IV. Casimir effect on sphere, etc.

Earlier Boyer had shown that the Casimir
self-energy of a spherical shell was positive, that
is repulsive. Such calculations have been
generalized.

Type ESpherea ECylindera
2 References

EM 0.04618 −0.01356 Boyer, DeRaad
D 0.002817 0.0006148 Bender,Gosdzinsky
(ε− 1)2 23

1536π 0 Brevik, Cavero
ξ2 5

32π 0 Klich, Milton
λ2/a2 1

32π 0 Milton, Cavero
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Dimensional dependence

Bender and Milton, “Scalar Casimir effect for a
D-dimensional sphere,” Phys. Rev. D 50, 6547 -
6555 (1994)

Here, we considered the Casimir effect due to

fluctuations in a scalar field interior and exterior

to a Dirichlet sphere.
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Poles occurs in even dimensions!
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Scalar Casimir stress S for 0 < D < 5 on a spher-
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V. Triangular cylinders

For an equilateral triangle of height h, the scalar
eigenmodes corresponding to Dirichlet boundary
conditions are known explicitly [Schwinger et al.,
Classical Electrodynamics, Electromagnetic Radiation]

γ2
l =

2

3

(π
h

)2

(l21 + l22 + l23),

l1 + l2 + l3 = 0, li 6= 0.

[Elom Abalo, K.A.M, and Lev Kaplan, Phys. Rev.
D 82, 125007 (2010).]
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Casimir energy

In d transverse dimensions, the Casimir energy is

E = −Γ(−1/2 − d/2)

22+dπ(d+1)/2

∑

l

(γ2
l )

(d+1)/2

which can be analytically continued and
summed by means of the Chowla-Selberg
formula (which we used to find the temperature
dependence for the diaphanous wedge), which is
exceedingly rapidly convergent.

E = +
0.0177891

h2
.
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Poisson sum formula

We can also evaluate the eigenvalue sum by use
of the Poisson sum formula,

∞∑

l=−∞
f(l) = 2π

∞∑

k=−∞
f̃(k),

in terms of the Fourier transform

f̃(k) =

∫ ∞

−∞

dα

2π
e2πikαf(α).
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Point-splitting regularization

We use the Poisson sum formula together with
point-split regularization, starting from

E =
1

2i

∫
(dr)

∫
dω

2π
2ω2G(r, r)e−iωτ ,

which for a cylindrical waveguide, gives

E =
1

2

∫ ∞

−∞

dζ

2π
2(−ζ2)

∫
dk

2π

∑

m,n

1

ζ2 + k2 + γ2
mn

eiζτ

=
1

2
lim
τ→0

(
− d

dτ

) ∫ ∞

−∞

dk

2π

∑

m,n

e−τ
√

k2+γ2
mn.
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Divergences

A virtue of the point-splitting method is that we
can isolate the divergences in the energy:

Ê (D)
Eq = lim

τ→0

(
3A

2π2τ 4
− P

8πτ 3
+

1

6πτ 2

)
.

We note that the “volume” and “surface” divergent

terms, which are respectively proportional to the

area of the triangle A = h2/
√

3 and the perimeter

P = 2
√

3h, are as expected, and are presumably

not of physical relevance.
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Corner divergences

The last term, a constant in h, certainly does not
contribute to the self-stress on the cylinder. Only
this term reflects the corner divergences. For a
general polygon, with interior angles αi, the last
term is

1

48π

∑

i

(
π

αi
− αi

π

)
1

τ 2
.

These coefficients are proportional to the heat

kernel coefficients –in particular there is no a2 HK

coefficient, which means that the CE can be iden-

tified unambiguously.
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Closed-form result

Remarkably, for the integrable polygonal figures
we are considering, the Casimir energy can be
given in closed form. in terms of the polygamma
function. Thus

E (D)
Eq = − 1

96h2

[√
3

9
[ψ′(1/3) − ψ′(2/3)] − 8

π
ζ(3)

]

=
0.0177891

h2
.

It is a priori remarkable that such an explicit form
can be achieved for a strong-coupling problem.
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Ec for square waveguide

Same methods for evaluating the Casimir energy
for a square waveguide (side a) (Lukosz/
Ambjørn and Wolfram):

E =
−1

32π2a2

[
2ζ(4) − πζ(3) + 8π2

∞∑

l=1

l3/2σ3(l)K3/2(2πl)

]

= − 1

32π2a2

[
4ζ(4) − 2πζ(3) + 4

∞∑

k,l=1

1

(k2 + l2)2

]

=
1

16πa2

[
ζ(3) − π

3
G

]
=

0.00483155

a2
.
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Other triangles

By bifurcating the square, we can obtain the
isosceles right triangle, and by bifurcating the
equilateral triangle we can get the 30◦-60◦-90◦

triangle:

Eiso =
1

2
Esq +

ζ(3)

16πa2
=

0.0263299

a2
,

E369 =
1

2
Eet +

ζ(3)

8πh2
=

0.0567229

h2
,

To be compared to the result for a circle

Ecirc =
0.0006148

a2
.
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H modes

We can also get results for Neumann boundary
conditions (H or TE modes)

EN
sq = ED

sq −
ζ(3)

8πa2
= −0.0429968

a2
,

EN
et = ED

et −
ζ(3)

6πh2
= −0.045982

h2
,

EN
iso =

1

2
EN

sq − ζ(3)

16πa2
= −0.0454125

a2
,

EN
369 =

1

2
EN

et −
ζ(3)

8πh2
= −0.0708193

h2
.
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Systematic dependence ofEDc

E(a) → EA(A/P 2), A = cross-sectional

area, P = perimeter of waveguide.
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Numerical work

Lev Kaplan has used a numerical method to

extract eigenvalues for right triangles with arbi-

trary acute angles. Those results lie on our

universal curve, and agree with the PFA (solid

line) for small acute angles. (Dirichlet BC.)
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Left: triangular cylinder, Right: triangle in plane.
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VI. Classical repulsion

Levin et al., PRL, 105, 090403 (2010).
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Classical dipole interaction

It is possible to achieve a repulsive force
between a configuration of fixed dipoles.
Consider the situation illustrated in the figure.

d1

d3d2

Z

a

Configuration of three dipoles, two of which are

antiparallel, and one perpendicular to the other

two. QFEXT119/20/11 – p.27/69



Force on perpendicular dipole

d2 = −d3 = d2x̂,

equally distant from the z axis, and the dipole on
the z axis is directed along that axis,

d1 = d1ẑ,

the force on that dipole is along the z axis:

Fz = 3ad1d2
a2/4 − 4Z2

(Z2 + a2/4)7/2
,

which changes sign at Z = a/4, that is, close to

Z = 0 the force is repulsive! QFEXT119/20/11 – p.28/69



Interaction of atom with aperture

•

2a

Z

α

ε t

Three-dimensional geometry of a polarizable

atom a distance Z above a dielectric slab with a

circular aperture of radius a.
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Dipole above aperture in PC line

Green’s function which vanishes on the entire
line z = 0:

G(r, r′) = − ln[(x−x′)2+(z−z′)2]+ln[(x−x′)2+(z+z′)2],

with BC:
G(x, 0;x′, z′) = 0,

the electrostatic potential at any point above the
z = 0 plane:

φ(r) =

∫

z>0

(dr′)G(r, r′)ρ(r′)+
1

4π

∫

ap

dS ′ ∂

∂z′
G(r, r′)φ(r′)
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Point dipole

where

ρ(r) = −d · ∇δ(r − R), R = (0, Z).

The surface integral extends only over the
aperture because the potential vanishes on the
conducting sheet. If we choose d to point along
the z axis we easily find (a = width of aperture)

φ(x, z > 0) = 2d

[
z − Z

x2 + (z − Z)2
+

z + Z

x2 + (z + Z)2

]

+
1

π

∫ a/2

−a/2

dx′
z

(x− x′)2 + z2
φ(x′, 0).
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Fourier transforms

Now the free Green’s function in two dimensions
is

G0(r, r
′) = 4π

∫
(dk)

(2π)2

eikx(x−x′)eikz(z−z′)

k2
x + k2

z

=

∫ ∞

−∞
dkx

1

|kx|
eikx(x−x′)e−|kx||z−z′|.

Then the surface integral above is
∫ ∞

−∞

dkx

2π
eikxxe−|kx|zφ̃(kx),
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in terms of the Fourier transform of the field

φ̃(kx) =

∫ ∞

−∞
dx′e−ikxx′

φ(x′, 0)

= 2

∫ a/2

0

dx′ cos kxx
′φ(x′, 0),

since φ(x, 0) must be an even function for the ge-

ometry considered.
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Fields above aperture

Thus we conclude

φ(x, z > 0) = 2d

[
z − Z

x2 + (z − Z)2
+

z + Z

x2 + (z + Z)2

]

+
1

π

∫ ∞

0

dk cos kx e−kzφ̃(k).

Ez(x, z = 0+) = − ∂

∂z
φ(x, z)

∣∣∣∣
z−0+

= −4d
x2 − Z2

(x2 + Z2)2
+

1

π

∫ ∞

0

dk k cos kx φ̃( k).
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Below aperture

On the other side of the aperture, there is no
charge density, so for z < 0 the potential is

φ(x, z < 0) =
1

π

∫ ∞

0

dk cos kx ekzφ̃(k),

so the z-component of the electric field in the
aperture is

Ez(x, z = 0−) = − ∂

∂z
φ(x, z)

∣∣∣∣
z=0−

= −1

π

∫ ∞

0

dk k cos kx φ̃(k).
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Coupled integral equations

Because we require that the electric field be
continuous in the aperture, and the potential
vanish on the conductor, we obtain the two
coupled integral equations for this problem,

4d
x2 − Z2

(x2 + Z2)2
=

2

π

∫ ∞

0

dk k cos kx φ̃(k), 0 < |x| < a/2

0 =

∫ ∞

0

dk cos kx φ̃(k), |x| > a/2.
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Simple solution

φ̃(k) = −4Zdπ

a

∫ 1

0

dx x
J0(kax/2)

(x2 + 4Z2/a2)3/2
.

From this, we can work out the energy of the
system from

U = −1

2
dEz(0, Z) =

1

2
d
∂φ

∂z

∣∣∣∣
z=Z,x=0

,

1/2 comes from the fact that this must be the en-

ergy required to assemble the system. We must

drop the self-energy of the dipole due to its own

field. QFEXT119/20/11 – p.37/69



Int. of atom with line/aperture

We are then left with

Uint = − d2

4Z2
− d

2π

∫ ∞

0

dk k e−kZφ̃(k)

= − d2

4Z2
+ Z2d2

(
2

a

)4 ∫ 1

0

1

2
dx2 1

(x2 + 4Z2/a2)3

= − 4Z2d2

(a2 + 4Z2)2
.

Twice that of Levin et al. Since this vanishes at

Z = 0 and Z = ∞, the force must change from

attractive to repulsive, which happens at Z = a/2.QFEXT119/20/11 – p.38/69



3D aperture int. with dipole

It is quite straightforward to repeat the above
calculation in three dimensions. Again we are
considering a dipole, polarized on the symmetry
axis, a distance Z above a circular aperture of
radius a in a conducting plate.
The free three-dimensional Green’s function in
cylindrical coordinates has the representation

1√
ρ2 + z2

=

∫ ∞

0

dk J0(kρ)e
−k|z|,
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Following previous procedure:

φ(r⊥, z > 0) = d

[
z − Z

[r2
⊥ + (z − Z)2]3/2

+
z + Z

[r2
⊥ + (z + Z)2]3/

+

∫ ∞

0

dk k e−kzJ0(kr⊥)Φ(k),

where the Bessel transform of the potential in
the aperture is

Φ(k) =

∫ ∞

0

dρ ρ J0(kρ)φ(ρ, 0).
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Integral equations

Thus the integral equations resulting from the
continuity of the z-component of the electric field
in the aperture and the vanishing of the potential
on the conductor are

d
r2
⊥ − 2Z2

[r2
⊥ + Z2]5/2

=

∫ ∞

0

dk k2J0(kr⊥)Φ(k), r⊥ < a,

0 =

∫ ∞

0

dk kJ0(kr⊥)Φ(k), r⊥ > a.
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Solution

The solution to these equations is given in
Titchmarsh’s book, and after a bit of manipulation
we obtain

Φ(k) = −
(

2ka

π

)1/2
2dZ

ka2

∫ 1

0

dx x3/2 J1/2(xka)

(x2 + Z2/a2)2
.

Then the energy may be easily evaluated using
∫ ∞

0

dk k3/2e−kZJ1/2(kax) = 2

√
2xa

π

Z

(x2a2 + Z2)2
.
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Closed-form energy

The energy can again be expressed in closed
form:

U = − d2

8Z3
+

d2

4πZ3

[
arctan

a

Z

+
Z

a

1 + 8/3(Z/a)2 − (Z/a)4

(1 + Z2/a2)3

]
.

This is always negative, but vanishes at infinity

and at zero. Numerically, we find that the force

changes sign at Z = 0.742358a.
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VII.Quantum vacuum energy

The reason why the energy vanishes when the
dipole is centered in the aperture is clear: Then
the electric field lines are perpendicular to the
conducting sheet on the surface, and the sheet
could be removed without changing the field
configuration.

Our goal is to analytically find the quantum

(Casimir) analog of this classical respulsion.
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Casimir force: cylinder/aperture

Levin et al., PRL 105, 090403 (2010).
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A. CP Force with Conducting Wedge

x

z

•
ρ

Ω

θ

Polarizable atom, located at polar coordinates ρ,

θ, within a conducting wedge with dihedral angle

Ω = π/p.
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Green’s dyadic

Γ(r, r′) = 2p
∞∑

m=0

′
∫
dk

2π

[
− MM′∗(∇2

⊥ − k2)

× 1

ω2
Fmp(ρ, ρ

′)
cosmpθ cosmpθ′

π
eik(y−y′)

+ NN ′∗ 1

ω
Gmp(ρ, ρ

′)
sinmpθ sinmpθ′

π
eik(y−y′)

M = ρ̂
∂

ρ∂θ
− θ̂

∂

∂ρ
,

N = ik

(
ρ̂
∂

∂ρ
+ θ̂

∂

ρ∂θ

)
− ŷ∇2

⊥.
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Free reduced Green’s functions

In this situation, the boundaries are entirely in
planes of constant θ, so the radial Green’s
functions are equal to the free Green’s function

1

ω2
Fmp(ρ, ρ

′) =
1

ω
Gmp(ρ, ρ

′) = − iπ

2λ2
Jmp(λρ<)H(1)

mp(λρ>)

with λ2 = ω2 − k2. We will immediately make

the Euclidean rotation, ω → iζ, where λ → iκ,

κ2 = ζ2+k2, so the free Green’s functions become

−κ−2Imp(κρ<)Kmp(κρ>).
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Completely anisotropic atom

We start by considering the most favorable case
for CP repulsion, where only αzz 6= 0. In the static
limit, then the only component of the Green’s
dyadic that contributes is

∫
dζ
2πΓzz

=
2p

4π3

∫
dk dζ

{ [
ζ2 sin2 θ sin2mpθ − k2 cos2 θ cos2mpθ

× m2p2

κ2ρ<ρ>
Imp(κρ<)Kmp(κρ>)

−
[
k2 sin2 θ sin2mpθ − ζ2 cos2 θ cos2mpθ

]

×I ′mp(κρ<)K ′
mp(κρ>)

}
.

Here we note that the off diagonal - terms in

QFEXT119/20/11 – p.49/69



Divergent term

Now the integral over the Bessel functions is
given by

∫ ∞

0

dκ κ Iν(κρ<)Kν(κρ>) =
zν

ρ2
>(1 − ξ2)

,

where ξ = ρ</ρ>. After that the m sum is easily
carried out by summing a geometrical series.
Care must also be taken with the m = 0 term in
the cosine series. The result of a straightforward
calculation leads to

∫
dζ

2π
Γzz = −cos 2θ

π2ρ4

1

(ξ − 1)4
+ finite.
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Subtracted Casimir energy

The divergent term is that of the vacuum without
the wedge, so we must subtract this term off,
leaving for the static Casimir energy

U zz
CP = −αzz(0)

8π

1

ρ4 sin4 pθ

[
p4 − 2

3
p2(p2 − 1) sin2 pθ

+
(p2 − 1)(p2 + 11)

45
sin4 pθ cos 2θ

]
.

This result may also be easily derived from the

closed form given by Lukosz.
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Expected Casimir-Polder result

A small check of this result is that as θ → 0 (or
θ → Ω) we recover the expected Casimir-Polder
result for an atom above an infinite plane:

U zz
CP → −αzz(0)

8πZ4
,

in terms of the distance of the atom above the

plane, Z = ρθ. This limit is also obtained when

p → 1, for when Ω = π we are describing a per-

fectly conducting infinite plane.
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Isotropic atom

A very similar calculation gives the result for an
isotropic atom, α = α1, which was first given by
Brevik, Lygren, and Marachevsky:

UCP = − 3α(0)

8πρ4 sin4 pθ

[
p4 − 2

3
p2(p2 − 1) sin2 pθ

− 1

3

1

45
(p2 − 1)(p2 + 11) sin4 pθ

]
.

Note that this is not three times U zz
CP in above,

because the cos 2θ factor in the last term in the

latter is replaced by −1/3 here.
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B. Repulsion by half-plane

Let us consider the special case p = 1/2, that

is Ω = 2π, the case of a semi-infinite conducting

plane.

x

z

•ρ θ

X

Consider a parti-

cle free to move along a line parallel to the z axis,

a distance X to the left of the semi-infinite plane.
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Infinite aperture

The half-plane x < 0 constitutes an aperture of
infinite width. With X fixed, we can describe the
trajectory by u = X/ρ = − cos θ, which variable
ranges from zero to one. The polar angle is given
by

sin2 θ

2
=

1 + u

2
.

The energy for an isotropic atom is given by

UCP = −α(0)

32π

1

X4
V (u),

V (u) = 3u4
[

1
(1+u)2 + 1

u+1 + 1
4

]
. QFEXT119/20/11 – p.55/69



Anisotropic atom

The energy for the completely anisotropic atom is

Vzz =
1

3
V (u) +

u4

2
(1 − 3u2).

If we consider instead a cylindrically symmetric
polarizable atom in which

α = αzzẑẑ+γαzz(x̂x̂ + ŷŷ) = αzz(1−γ)ẑẑ+γαzz1,

where γ is the ratio of the transverse
polarizability to the longitudinal polarizability of
the atom, the effective potential is

(1 − γ)Vzz + γV, QFEXT119/20/11 – p.56/69



Force on anisotropic atom

and the z-component of the force on the atom is

F γ
z = −αzz(0)

32π

1

X5
u2

√
1 − u2

d

du

[
1

2
u4(1 − γ)(1 − 3u2)

+
1

3
(1 + 2γ)V (u)

]
,

Note that the energy only vanishes at u = 1 (the

plane of the conductor) when γ = 0. Thus, the

argument given in Levin et al. applies only for the

completely anisotropic case.
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Fz on anisotropic atom
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Fz = −αzz/(32πX5)f(u) f > 0 is attractive, f < 0

repulsive. γ goes from 0 to 1 by steps of 0.1, from

bottom to top. For γ < 1/4 a repulsive regime

always occurs when the atom is sufficiently close

to the plane of the conductor. QFEXT119/20/11 – p.58/69



Finer resolution
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The region close to the plane, 1 ≥ u ≥ 0.99, with

γ near the critical value of 1/4. Here from bottom

to top are shown the results for values of γ from

0.245 to 0.255 by steps of 0.001.
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Same effect for vdW

It is interesting to observe that the same critical
value of γ occurs for the nonretarded
(electrostatic) regime of a circular aperture, as
follows from a simple computation based on the
result of Ebelein and Zietal.

U = − 1

16π2

∫ ∞

−∞
dζ αzz(ζ)

× 1

Z3

{
(1 + γ)

(
π

2
+ arctan

Z2 − a2

2aZ

)

+
2aZ

(Z2 + a2)3

[
(1 + γ)(Z4 − a4) − 8

3
(1 − γ)a2Z2

It is easy to see that this has a minimum for ,
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C. Repulsion by a wedge

It is very easy to generalize the above result for a
wedge, p > 1/2. That is, we want to consider a
strongly anisotropic atom, with only αzz

significant, to the left of a wedge of opening
angle

β = 2π − Ω,

as shown in the figure.

X

•ρ

β

θ

φ
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Changed coordinates

We want the z axis to be perpendicular to the
symmetry axis of the wedge so the relation
between the polar angle of the atom and the
angle to the symmetry line is

φ = θ + β/2,

where, as before, θ is the angle relative to the top

surface of the wedge. The C-P energy is changed

only by the replacement cos 2θ by cos 2φ, with no

change in sin pθ. How does repulsion depends on

the wedge angle β?
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Dependence on wedge angle

Write for an atom on the line x = −X

U zz
CP = −αzz(0)

8πX4
V (φ),

where

V (φ) = cos4 φ

[
p4

sin4 π
2

φ−β/2
π−β/2

− 2

3

p2(p2 − 1)

sin2 π
2

φ−β/2
π−β/2

+
1

45
(p2 − 1)(p2 + 11) cos 2φ

]
.
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Vanishing of energy?

At the point of closest approach,

V (π) =
1

45
(4p2 − 1)(4p2 + 11),

so the potential vanishes at that point only for the

half-plane case, p = 1/2.

QFEXT119/20/11 – p.64/69



Fz

Fz = −αzz

8π

1

X5
cos2 φ

∂V (φ)

∂φ
.

The figure shows the force as a function of φ for

fixed X. It will be seen that the force has a repul-

sive region for angles close enough to the apex

of the wedge, provided that the wedge angle is

not too large. The critical wedge angle is actu-

ally rather large, βc = 1.87795, or about 108◦. For

larger angles, the z-component of the force ex-

hibits only attraction.
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Fz for β ∈ [0, π]
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D. CP repulsion by cylinder
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The effect of including the first 2–5 terms. QFEXT119/20/11 – p.67/69



CP repulsion by cylinder not sphere

Plotted is the total CP energy, the upper set be-

ing for the distance of closest approach R being

5 times the cylinder radius a, the lower set for the

distance of closest approach 10 times the radius.

Repulsion is clearly observed when R/a = 10, but

not for R/a = 5. For a conducting sphere, since

at large distances it looks like a polarizable atom

(with both electric and magnetic polarizabilities),

no repulsion on a completely anisotropic atom oc-

curs.
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VIII. Conclusions

Casimir self-energies often exhibit repulsion,
but general systematics are not yet worked
out.

Repulsion occurs between electric and
magnetic conductors, or materials or
metamaterials that mimic this behavior over a
wide frequency range.

Intervening intermediate “density” materials
can mimic repulsion.

But true repulsion can be exhibited in CP
situations with suitable anisotropies.

Stay tuned! QFEXT119/20/11 – p.69/69
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