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A brief explanation about Quantum Field Theory in
Curved Spaces

Classical background spacetime (M, gab)

+

Quantized field Φ over (M, gab)
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A brief explanation about Quantum Field Theory in
Curved Spaces

In order to calculate the energy density in some state in QFTCS we must
follow the steps below:

I Fix the background spacetime;

I Solve the field equation and find a complete set of modes;

I Expand the field operator in terms of negative and positive-norm
modes;

I Formally substitute the field operator in the
energy-momentum-tensor expression.

Due to the fact that the energy-momentum tensor depends quadratically
on the field operator one need to employ some regularization and
renormalization scheme to obtain meaningful physical results.
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On the mechanism
Hypothesis

The physical system:

Spherically symmetric star made
of perfect fluid

+

A free quantum scalar field Φ̂

The space-time metric:

ds2 ∼
{
−dt2 + dx2 + dy2 + dz2, past
−f(χ)

(
dt2 − dχ2

)
+ r2(χ)

(
dθ2 + sin2 θdϕ2

)
, future

.

Field equation: the massless Klein-Gordon equation.

− 1√
−g

∂µ

(√
−g gµν∂νΦ̂

)
+ ξRΦ̂ = 0.

Note: for the mechanism in more general spacetimes see
WCCL and D.A.T. Vanzella, Phys. Rev. Lett., 104, 161102 (2010).
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On the mechanism
In the past

Field equation: (
∂2
t −∇2

)
Φ̂ = 0.

I will choose the modes that in the past are normalized plane-waves,

uk
past∼ 1√

16π3ωk

ei(k·x−ωkt).

where ωk =
√
k2. The field Φ̂, can be written as

Φ̂ =

∫
R3

d3k (âkuk + h.c.).

These modes define the following vacuum state, the usual Minkowski
vacuum:

âk|0〉M = 0

for all k ∈ R3.
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On the mechanism
In the future

Field equation:

1

f
∂2
t Φ̂− 1

fr2
∂χ

(
r2∂χΦ̂

)
− 1

r2 sin θ

[
∂θ

(
sin θ∂θΦ̂

)
+ ∂2

ϕΦ̂
]

+ ξRΦ̂ = 0.

In the future the modes uk are no longer plane-waves. Therefore, in
order to learn about their behaviour in the future it is useful (but not
necessary) to choose those modes that have the form

vσlµ
future∼ Tσ

Fσl
r
Ylµ,

where Ylµ are the spherical harmonics. The equations satisfied by Tσ and
Fσl are

d2

dt2
Tσ + σTσ = 0 − d2

dχ2
Fσl + V

(l)
eff Fσl = σFσl.
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On the mechanism
In the future

The equation for the radial part of the modes in the future is

− d2

dχ2
Fσl + V

(l)
eff Fσl = σFσl,

where I have defined the effective potential V
(l)
eff as

V
(l)
eff := f

[
ξR+

l(l + 1)

r2

]
+

1

r

d2r

dχ2
.

Certainly, these equations allow solutions with positive values of σ. It
means that there is a set of solutions of the field equation with the form

v$lµ
future∼ e−i$t√

2$

F$l(χ)

r(χ)
Ylµ(θ, ϕ),

where $ =
√
σ.
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On the mechanism
In the future

Question: could V
(l)
eff be negative enough in order to allow solutions of

the radial differential equation with σ < 0?
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On the mechanism
In the future

Through the Einstein equations, it is possible to write V
(0)
eff as

V
(0)
eff = f

[
8πG(ξ − 1/6)(ρ− 3P ) +

8πG

3
(ρ̄− ρ)

]
,

where ρ̄(χ) = 3M(χ)
4πr3(χ) and M(χ) is the mass of the object up to χ. From

the experience with the time-independent Schrödinger equation

|V (0)
eff |L

2 ∼ 1

is an useful guide to search for bound solutions. From the previous

expression for V
(0)
eff , it means that the condition for ρ is

GρL2

c2
≈ ρ

1015 g/cm3

(
L

7 km

)2

∼ 1,

where I have used the typical density for neutron stars. The length-scale
that appears in this case is consistent with the typical size of these
objects.
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On the mechanism
In the future: Numerical search for bound solutions

The results below show the existence of solutions for the radial equation
with σ < 0 for different values of the mass-radius ratio of the star and ξ.

Uniform-density star Parabolic density profile

Note: these results can be found in
WCCL, G.E.A. Matsas and D.A.T. Vanzella, Phys. Rev. Lett., 105, 151102 (2010).
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On the mechanism
In the future: Bound solutions for a static spherical shell

The results below show the existence of solutions for the radial equation
with σ < 0 for different values of the mass-radius ratio of the shell and ξ.

Modes with l = 0 Modes with l = 1

Note: these results will be presented in
WCCL and D.A.T. Vanzella (in preparation).
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On the mechanism
In the future

This result means that exist classically-stable stars for which the field
equation also admits solutions with the following asymptotic form:

wΩlµ
future∼ eΩt−iπ/12 + e−Ωt+iπ/12

√
2Ω

GΩlµ(χ)

r(χ)
Ylµ(θ, ϕ),

where Ω =
√
|σ|. Since the v$lµ and wΩlµ form a complete set of

modes, it is possible to write

uk =
∑
lµ

∫
d$
[
αk$lµv$lµ + βk$lµv

∗
$lµ

]
+
∑
Ωlµ

[
αkΩlµwΩlµ + βkΩlµw

∗
Ωlµ

]
.

Therefore, the new base reveals that in the future some of the u-modes
grow exponentially.
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Awaking the vacuum in relativistic stars
Observable consequences

Let’s consider the usual Minkowski vacuum in the asymptotic past as the
initial state for the quantum field. Fluctuations:

M〈0|Φ̂2|0〉M
future∼ κe2Ω̄t

2Ω̄

(
Ḡ

r

)2 [
1 +O

(
e−εt

)]
.

The components of the energy-momentum tensor:

M〈0|T̂00|0〉M
future∼ M〈0|Φ̂2|0〉M

{
(1− 4ξ)

2

(
Ω̄2 +

(DḠ)2

Ḡ2

)
+ (1− 6ξ)

(
−2ξD2r

r
+

(Dr)2

2r2

− DirD
iḠ

rḠ

)
+O(e−εt)

}
,

M〈0|T̂0i|0〉M
future∼ M〈0|Φ̂2|0〉M

{
(1− 4ξ)

Ω̄DiḠ

Ḡ
− (1− 6ξ)

Ω̄Dir

r

+O(e−εt)

}
.
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Awaking the vacuum in relativistic stars
An estimate of the asymptotic exponential growth of the energy density

Consider a star of size L and suppose that the typical mode wavelength
is of order L.

ρvacuum
future∼ e

2ct
L

~c
L4
∼ exp

{
t/10−9 s

L/1 m

}
3 × 10−46 g/cm3

(L/1 m)
4 .

For L ≈ 104 m and ρ ≈ 1015 g/cm3 (typical size and density of a
neutron star)

ρvacuum

ρ

future∼ 3× 10−77 × exp

{
t

10−5 s

}
.

Therefore
t ∼ 2× 10−3 s ⇒ ρvacuum

ρ
∼ 1.
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Putting the vacuum to sleep
Probing the unstable phase with detectors

Let’s consider a two-level Unruh-DeWitt detector coupled to the
quantum field according to

ŜI = ε

∫ +∞

−∞
c(τ)m̂(τ)Φ̂[x(τ)]dτ.

The excitation probability is given by

Pexc = ε2|〈E0|m̂(0)|E1〉|2F(E1 − E0),

where

F(E) :=

∫ T

0

dτ

∫ T

0

dτ ′e−iE(τ−τ ′)〈0|Φ̂[x(τ)]Φ̂[x(τ ′)]|0〉,

the detector response function.
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Putting the vacuum to sleep
Probing the unstable phase with detectors

Suppose now that the detector is switched on when the vacuum is
awakened. After a period of time T (Ω̄T/

√
−g00 >> 1), the dominant

contribution to Pexc is

Pexc ∼ ε2e
2Ω̄T√
−g00

|〈E0|m̂(0)|E1〉|2

2Ω̄

[(
Ω̄√
−g00

)2

+ ∆E2

]
×
∫
R3

d3k
∣∣∣αkΩ̄e

iπ/12 − β∗kΩ̄e
−iπ/12

∣∣∣2 [H̄(x0)

Ψ

]2

Therefore, particle detectors will excite copiously during the unstable
phase.

William C.C. Lima Awaking the vacuum in relativistic stars (and putting it to sleep)



Putting the vacuum to sleep
Burst of particles
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Putting the vacuum to sleep
Burst of particles

The calculation of the beta coefficient of the Bogoliubov transformation
between the in and the out mode basis in this case leads to

|βlk|2 ∼ e2Ω̄T

for Ω̄T >> 1. Here T is the
duration of the unstable phase
from the point of view of the
static observers of that region of
the background spacetime.

When the vacuum falls asleep a
burst of particle is realised.

Note: these results will be presented in
A.G.S. Landulfo, WCCL, G.E.A. Matsas and D.A.T. Vanzella (in preparation).
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Conclusions and remarks

I In spite of the exponential growth, the energy-momentum tensor is
covariantly conserved during the unstable phase.

I The hypothesis we have used, like a scalar field and an
asymptotically static spacetime both in past and future, are just in
order to simplify the arguments and put in evidence the main
characteristics of the effect.

I The effect defines a time-scale for the backreaction. In the case of a
neutron star with ρ ≈ 1015 g/cm3 and r0 ≈ 104 m, the time that
takes for ρvacuum ≈ ρ is about 2× 10−3 s. Once the vacuum energy
has become comparable to the star energy it is imperative taking it
into account on the right-hand side of the Einstein equations. In this
case, only by dealing with the vacuum backreaction one can decide
the ultimate fate of the astrophysical object.

I Although I have shown that the effect can be trigged for unusual
values of ξ, the vacuum may be awaken for more natural values of ξ
in more complicated space-times.
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Conclusions and remarks
I The vacuum awakening mechanism provides an interesting

interconnection between QFTCS and observational Astrophysics.
The observation of a stable star could be used to rule out the
existence of certain fields in Nature. Since 95% of the energy of the
Universe is still unknown, such criterion is very welcome. On the
other hand, the existence of fields with certain ξ may spoil the
stability of some classically-stable stars.

I The mechanism engendering the particle creation after the end of
the vacuum instabilities is independent of the rate at which the
background is changing. In this sense, this mechanism is different
from the well-known particle creation phenomena in expanding
universes and in black hole evaporation.
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Thank you for your attention!
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