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Introduction: basic concepts and purposes

• The dynamical Casimir effect (DCE) consists, essentially, by
- particle creation caused by moving boundaries;
- radiation reaction forces on the moving boundaries.

• It already manifests for a unique moving plate:

x

ω0
photons

emited with
frequencies ωγ ≤ ω0

moving plate
with frequency ω0

• For non-relativistic motion, we have ωγ ≤ ω0.



Introduction: basic concepts and purposes

• A quantum mechanical analog: a harmonic oscillator (HO)
with a time-dependent frequency

ω(t) = cte for t < ti (ωin) and t > tf (ωout)
• If the HO is in its ground state for t < ti, there is a non zero

probability of being found in an excited state for t > tf

• A simple example: a sudden change from ωin to ωout,
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Introduction: basic concepts and purposes

• In this case, it can be shown that aout = αain − β∗a†in where

α =
1
2

(√
ωin

ωout
+

√
ωout

ωin

)
; β =
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−

√
ωout
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)

The final state is a squeezed state,

|0〉 �−→ |ξ〉 = S(ξ)|0〉 , with S(ξ) = e
1
2

(
ξa†2 − ξ∗a2

)

and

α = cosh |ξ| ; β =
ξ

|ξ| sinh |ξ|

• Since moving mirrors ←→ time-dependent potentials, they
may excite the field from its ground state (vacuum) to an
excited state (with real quanta).

• From conservation energy arguments, there must appear a
radiation reaction force on the moving boundaries.



Introduction: basic concepts and purposes

• The DCE can be understood in the opposite way: dissipative
forces =⇒ particle creation

• Fluctuations of the static Casimir force - Barton - 1991;

• From the Fluctuation-Dissipation Theorem we expect
dissipative forces on moving boundaries (Braginsky/Khalili - 1991

and Jaeckel/Reynaud - 1992);

• Again, invoking conservation of energy, the dissipative forces
on the moving boundaries convert mechanical energy into field
energy (real particle creation);



Introduction: basic concepts and purposes

First works:

• Moore (1970); Quantum theory of the electromagnetic field
in a variable cavity; 1+1 model (scalar field); arbitrary motion;

Moore equation =⇒ R
(
t − L(t)

)
= R

(
t + L(t)

)
− 2

• DeWitt (1975); in the context of QFT in curved spacetimes

• Fulling and Davies (1976); Tμν in 1 + 1; conformal transf.;
arbitrary motion of the mirror

• Ford and Vilenkin (1982); perturbative method in 3 + 1;
moving plate in non-relativistic motion.

• The particle creation phenomenon is strongly enhanced for a
cavity in parametric resonance (Dodonov-Klimov (94))



Introduction: basic concepts and purposes

• Generalization for the electromagnetic field
(Maia Neto et al - 94/96/98):

• More recently: threedimensional cavities, waveguides, DCE
and quantum decoherence (Dalvit, Maia Neto,..); new methods
of calculation (Plunien, Elizalde,..)

• Experimental verification: the DCE has been observed in
the context of Circuit QED (Wilson and collaborators - 2011)

Main purposes of the present work

• To simulate (theoretically) a moving mirror by imposing on
the field a time-dependent Robin BC at a static mirror.

• To consider slightly more general BC that can be useful in
future experiments.



Experimental proposals

• Static Casimir effect: 1st measured in 1958 (bad accuracy);
modern experiments (since 1997) =⇒ very good precision.

• Dynamical Casimir effect: observed ≈ 40 years after its
theoretical prediction.

• Dissipative effects are very small. A mirror in harmonic motion
damped by the quantum vacuum flutuations:

d2x

dt2
− �

6πMc2

d3x

dt3
+ ω2

0x = 0 =⇒ Γ
ω0

=
1

12π

�ω0

Mc2

• best option: to measure the created photons.

• Recent technological advances relevant to the DCE:

• Possibility of rapid mechanical oscillations: ∼ 3, 0 GHz;
• Rapid changes of the reflecting properties of a semiconductor

induced by the incidence of appropriate laser pulses.
• Circuit QED.

• We shall describe briefly some experiments on DCE.



Experimental proposals
Superradiance proposal: Kim et al - 2006

• Oscillating cavity (3GHz) −→ parametric resonance;

• dynamical Casimir photons interact with excited Na atoms
inside the cavity triggering a superradiant pulse;

• a detector can be coupled to the cavity and the time delay of
the superradiant pulse is a signature of the Casimir photons.



Experimental proposals
Italian group: Braggio et al - 2005

Microwave

Nb plate Semiconductor layer of AsGa

Nb superconducting cavity

Optical fiber

Antenna

Train of laser pulses

• Cavity with a semiconductor layer (∼mm) in one of its walls;

• billions of laser pulses (with appropriate laser frequency) reach
the semiconductor layer per second.



Experimental proposals

Italian group: Braggio et al

• The reflecting wall changes from a transparent one to a
completely reflecting one billions of times per second (∼ GHz)

• the changes transparent ←→ reflecting , then, simulates
an oscillatory motion of the mirror between surfaces P1 and P2

• important question: how fast does the effective reflecting
surface go from P1 to P2 and vice versa?

P1 ←→ 10−15s ; P2 ←→ 5 × 10−12s

• Reflectivity of (AsGa) ∼ Copper in the microwave range;

• AsGa does not affect the cavity quality factor Q (106)

• detector sensibility: ∼ 104 microwave photons (2, 5GHz),
order of magnitude of the expected experimental signal.



Experimental proposals

Coplanar waveguide experiment

Effective
mirror

Transmission line

coplanar waveguide

photon-flux density

• Recently (2009), Johansson et al proposed an experiment on
DCE in 1+1 in the context of circuit QED:
semi-infinite coplanar waveguide terminated with a SQUID



Experimental proposals

Coplanar waveguide experiment

• The effective inductance of the SQUID can be tuned by an
external time-dependent magnetic flux, Φext(t), providing a
tunable boundary condition;

• the set-up is equivalent to a one-dimensional transmission line
with a tunable effective length, i.e., a tunable mirror;

• in this system, the effective velocities may be extremely high,
leading to high photon creation rates

(∼ 105/s around 90Ghz)



Experimental proposals
Coplanar waveguide experiment

• JR Johansson et al, 2010: theoretical details;

• CM Wilson et al, 2010: preliminary observations;

• CM Wilson et al “Observation of the Dynamical Casimir Effect
in a Superconducting Circuit”, arXiv: 1105.4714v1.

Note the asymmetry of the spectral distribution.



Experimental proposals

DCE in optically modulated cavities (Faccio-Casurotto-2011)

• An appropriate train of laser pulses is applied perpendicularly
to a cavity made of a non-linear optical fiber.

• Efficient modulation of the effective optical length of a cavity
mode in the near IR region.

neff (t) = n0 + δn(t) = n0 + n2Ip(t)



Robin boundary conditions

Main features

• For a scalar field φ in 3+1, Robin BC is defined by(
φ − β

∂φ

∂n

)∣∣∣∣
boundary

= 0

where β is a constant parameter with dimension of length.

• They interpolate continuously Dirichlet (β → 0) and
Neumann (β → ∞) boundary conditions

• For ω � ωP , β plays the role of the plasma wavelength
Phenomenological model for penetrable surfaces
(Mostepanenko and Trunov - 1985)

• They appear in Mechanics, electromagnetism, quantum
mechanics and QFT (Casimir effect,..), among others.



Robin boundary conditions

• Classical mechanics: it appears in vibrating strings coupled
to harmonic oscillators at its edges (Chen and Zhou - 1992)

x
�0κ

T

For |∂φ
∂x |�1Newton’s law applied to the massless ring leads to

φ(x, t)
∣∣∣∣
x=0

=
T

κ

∂φ(x, t)
∂x

∣∣∣∣
x=0

,

where T/κ plays the role of the parameter β.



Robin BC in the static Casimir effect

• Eigenfrequencies are roots of a transcendental Eq. For a 1+1
cavity with Robin-Dirichlet BC,[

sen(kx) + βk cos(kx)
]
x=a

= 0 =⇒ tg(ka) = −β

a
(ka)

tg x

g x / q0
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Robin BC in the static Casimir effect
For the more general case of Robin(β1) - Robin(β2) BC, the
eigenfrequencies are the roots of g(z) = 0, with

g(z) = (β1 + β2)z cos(za) + (1 − z2β1β2) sen(za) .

The regularized zero point energy,

E
(reg)
0 (a, σ) =

∞∑
n=1

1
2
ωne−σωn =

∞∑
n=1

f(ωn) ,

can be computed with the aid of the Argument Theorem,∑
n

rn f(zn) −
∑
n

sn f(pn) =
1

2πi

∮
C
dz f(z)

d

dz
log g(z) ,

After subtracting unphysical terms, the Casimir force reads

FCas(a, β1, β2) = − 1
π

∫ ∞

0
dy y

[
(1 + β1y)(1 + β2y)
(1 − β1y)(1 − β2y)

e2ay − 1
]−1

.



Casimir force × a for 
= values of β1 e β2 (arbitrary units)
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Restoring Casimir forces (red dotted line) (Romeo/Saharian-2002)

• A detailed discussion of BC can be found in many recent
papers by Asorey, Garćıa Álvarez, Clemente-Gallardo and

Muñoz-Castañeda.



Robin BC in the dynamical Casimir effect

Force on the moving mirror:

• massless scalar field φ in 1 + 1 and one mirror in a prescribed
and non-relativistic motion with small amplitudes,

|δq̇(t)| << c and |δq(t)| << c/ω0 ,

where ω0 corresponds to the mechanical frequency.

• Solving ∂2φ(t, x) = 0, submitted to Robin BC[
∂

∂x
+ δq̇(t)

∂

∂t

]
φ(t, x)|x=δq(t) =

1
β

φ(t, x)|x=δq(t) + O(δq̇2/c2) ,

in the Ford-Vilenkin perturbative approach (φ = φ0 + δφ),
one can show that the susceptibility acquires a real part

δF(ω) = χ(ω)δQ(ω), with χ(ω) = Reχ(ω) + iImχ(ω)



Robin BC in the dynamical Casimir effect
• Total work on the moving plate: only Imχ(ω) contributes,∫ +∞

−∞
F (t)δq̇(t) dt = − 1

π

∫ ∞

0
dω ω Im χ(ω)|δQ(ω)|2 .

• Reχ(ω) and Imχ(ω), normalized by Imχ
D
(ω) = ω3/(6π) as

functions of βω (possible suppression of dissipative effects):



Robin BC in the dynamical Casimir effect

Particle creation:

• The spectral density is given by (Mintz et al - 2006)

dN(ω)
dω

=
4ω

1 + β2ω2

∫ ∞

0

dω′

2π
[δQ(ω − ω′)]2

1+β2ω ′2 ω′
[
1−β2ωω′

]2

• For a typical oscillatory motion, given by

δq(t)=δq0 e−|t|/Tcos(ω0t), with ω0T � 1

δQ(ω) is a very narrow function around ±ω0, so that

dN

dω
(ω)=(δq0)2Tω(ω0 − ω)

[1 − β2ω(ω0 − ω)]2Θ(ω0 − ω)
(1 + β2ω2)(1 + β2(ω0 − ω)2)

For β = 0 or β → ∞ we get (Lambrecht et al-1996)

dN

dω
(ω) = (δq0)2Tω(ω0 − ω)Θ(ω0 − ω) .



Robin BC in the dynamical Casimir effect

Spectral distribution dN/dω as a function of ω/ω0 for 
= values of β

Dashed line ←→ Dirichlet BC; solid line ←→ βω0 = 1, 7



Robin BC in the dynamical Casimir effect
• Total number of created particles and creation rate:

N =
∫ ω0

0

dN

dω
(ω) dω =

[
δq2

0 T

12π
ω3

0

]
6F (βω0) ; R =

N

T
,

F (ξ) =
ξ[4ξ + ξ3 + 12 arctan(ξ)] − 6(2 + ξ2) ln(1 + ξ2)

6ξ2(4 + ξ2)

⇐= with fixed β



Modeling a moving boundary by a static one

• Purpose: to make a simple theoretical model that describes
static surfaces which simulate moving mirrors;

• motivation: recent experimental proposals;

• theoretical model: since the Robin parameter is related to
the penetration depth, a time-dependent Robin parameter
may simulate a moving mirror;

• we consider a massless scalar field in 1+1 submitted to a
Robin BC with time-dependent parameter at x = 0:

φ(0, t) = γ(t)
∂φ

∂x

∣∣∣∣
x=0

• to apply the Ford/Vilenkin perturbative approach, we assume

γ(t) = γ0 + δγ(t) ; with max |δγ(t)| � γ0 .



Modeling a moving boundary by a static one

• By assumption, δγ is a prescribed function of t that vanishes
in the remote past and distant future;

• after a straightforward calculation, we obtain (Bogoliubov
transformation)

aout(ω) = ain(ω) − 2i
√

ω

1 + γ2
0ω2

∫ +∞

−∞

dω′

2π

√
ω′

1 + γ2
0ω′2×

×
[
Θ(ω′)ain(ω′) − Θ(−ω′)a†in(−ω′)

]
δΓ(ω − ω′) ,

where δΓ(ω) is the Fourier transformation of δγ(t).

• Note the presence of a†in(−ω′) in the expression for aout(ω).



Modeling a moving boundary by a static one

• Using the previous Bogoliubov transformation and

dN(ω)
dω

=
1
2π

〈0in| a†out(ω)aout(ω) |0in〉,

we obtain for the spectral distribution

dN(ω)
dω

=
2
π

(
ω

1 + γ2
0ω2

)∫ ∞

−∞

dω′

2π
ω′

1 + γ2
0ω′2

∣∣δΓ(ω − ω′)
∣∣2Θ(ω′).

• In order to compare the present results with previous ones, we
choose for the time-dependence of the Robin parameter an
oscillatory behaviour, namely,

δγ(t) = ε0 cos(ω0t) e−| t |/T ,

which substituted into the previous equation leads to the
following spectral distribution



Modeling a moving boundary by a static one

dN(ω)
dω

=
(

ε2
0T

2π

)
ω (ω0 − ω)

(1 + γ2
0ω2)

[
1 + γ2

0(ω0 − ω)2
]Θ(ω0 − ω),

which is completely analogous to that found for a moving mirror
and a time-independent Robin parameter,
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Modeling a moving boundary by a static one
• However, things are different for the particle creation rate

R =
N

T
=

1
T

∫ ∞

0

dN(ω)
dω

dω =
(

ε2
0ω

3
0

2π

)
G(ω0γ0)

where

G(ξ) =
(2 + ξ2) ln(1 + ξ2) − 2ξ arctan(ξ)

ξ4(4 + ξ2)



Modified Robin BC
• We shall now consider a slightly different boundary condition:

φ (t, x) |x=0 = γ (t)
[
∂xφ (t, x) − α0∂

2
t φ (t, x)

]
x=0

.

Motivation: this BC appeared in the discussion of the
SQUID experiment (there the α0-term can be neglected).

• As before, γ (t) = γ0 + δγ (t) and we adopt Ford/Vilenkin
perturbative approach, φ (t, x) = φ0 (t, x) + δφ (t, x).

• The boundary condition for φ0 is given by

φ0 (t, x) |x=0 = γ0

[
∂xφ0 (t, x) − α0∂

2
t φ0 (t, x)

]
x=0

,

while that for δφ can be written as[
1 − γ0

(
∂x − α0∂

2
t

)]
δφ (t, x)

∣∣∣
x=0

=

= δγ (t)
(
∂x − α0∂

2
t

)
φ0 (t, x)

∣∣∣
x=0

.



Modified Robin BC

• Let us take the same time-dependence for γ(t) = γ0 + δγ(t),

δγ (t) = ε0 cos (ω0t) e−t/τ , ω0τ � 1 .

• Introducing Fourier transf. Φ(ω, x), Γ(ω, x), ..., and relating
Φin and Φout we get the Bogoliubov transf. which lead to

dN(ω)
dω

=
1
2π

〈a†out(ω)aout(ω)〉

=
ε2
0τ/(2π)

(1 + α0γ0ω2)4
ω

[
1 + 2α0γ0 (ω0 − ω)2

]2

(1 + α0γ0ω2)2 + γ2
0ω2

×

× (ω0 − ω)Θ(ω0 − ω)
[1 + α0γ0(ω0 − ω)2]2 + γ2

0(ω0 − ω)2
,



Modified Robin BC
• Spectral distribution for a fixed γ0 and increasing values of α0

Figura: α0 = 0 (solid), α0 = 1/2 (dashed), α0 = 1 (dotted-dashed).

The introduction of the α0-term leads to an assymmetric
spectral distribution.



Modified Robin BC
• Total number of created particles as a function of the

effective oscillating frequency ω0:

Figura: The total number as a function of ω0 for α0 = 0 (solid line),
α0 = 1 × 10−3 (dashed line) and α0 = 2 × 10−3 (dot-dashed line).



Final remarks and perspectives

• Dynamical Casimir effect: after ∼ 40 years finally observed
(though in the context of Circuit QED);

• There are a few other promissing experimental proposals;

• Robin BC with cte parameter at a moving mirror and
time-dependent parameter at a static mirror have intriguing
properties in DCE (for cte γ, see the poster of ACL Rego);

• Different situations can be simulated by choosing
appropriately the time-dependence of the Robin parameter;

• cte γ and γ(t): quite different behaviours for large ω0 → ∞.

• Numerical estimatives for comparison with experiments;

• Understand the asymmetric observed spectral distribution

• thermal effects, generalization to 3+1 dimensions;

• cavity in 1+1 with time-dependent Robin parameters;


