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Since the Aharonov-Bohm effect is the purely quantum effect which 
has no analogues in classical physics, it becomes evidently more 
manifest in the limit of long wavelengths of a scattered particle, when 
the wave aspects of the matter are exposed to the maximal extent. 
As the particle wavelength decreases, the wave aspects of matter 
are suppressed in favour of the corpuscular ones, and therefore the 
persistence of the Aharonov-Bohm effect in the limit of short 
wavelengths (or high energies) seems to be rather questionable.
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● high-energy (quasiclassical) limit  k → ∞ ?
● dependence on the boundary condition ?
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   The plane wave passing through the origin (r=0) can be naturally interpreted at 
large distances from the origin as a superposition of two cylindrical waves: the 
diverging one,       , in the forward,        , direction and the converging one,       ,  
from the backward,         , direction.
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Scattering by an impermeable tube
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Scattering by an impermeable magneti vortex
Schrödinger equation out of the vortex

where     is the total flux of the vortex and                      is the London flux quantum

1º  condition
 

 
2º  condition (Robin)

 

          : Dirichlet (perfect conductivity of the boundary)
          : Neumann (absolute rigidity of the boundary)
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where     is the total flux of the vortex and                      is the London flux quantum

1º  condition
 

 
2º  condition (Robin)

 

          : Dirichlet (perfect conductivity of the boundary)
          : Neumann (absolute rigidity of the boundary)

where                and 
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Asymptotics at large distances

 where
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Asymptotics at large distances

 where

S-matrix
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Low-energy (ultraquantum)  limit           :

                                    is the integer part of          

Y.Aharonov, D.Bohm. Phys.Rev. 115, 485 (1959)
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Low-energy (ultraquantum)  limit           :

                                    is the integer part of          

Y.Aharonov, D.Bohm. Phys.Rev. 115, 485 (1959)

S-matrix unitarity condition

Optical theorem:
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          High-energy (quasiclassical) limit           :
S-matrix unitarity condition
  

where

Optical theorem
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          High-energy (quasiclassical) limit           :
S-matrix unitarity condition
  

where

Optical theorem

Scattering amplitude in the              case:

where
 

 
Yu.A.S.,N.D.Vlasii, J.Phys.A 44, 315301 (2011)
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Differential cross section in the high-energy limit
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Differential cross section in the high-energy limit

                          
              

            classical reflection                Fraunhofer diffraction                        
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Differential cross section in the high-energy limit

                          
              

            classical reflection                Fraunhofer diffraction                        

where

 

Total cross section 
 

                                                                                                                          
                                                         Yu.A.S., N.D.Vlasii, Ann.Phys. 326, 1441 (2011) 
                                                                                                       EPL 92, 60001  (2010)
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                                                      Conclusion 

●   Although the Aharonov-Bohm effect is the purely quantum effect   
    that is alien to classical physics, it persists in the quasiclassical     
    limit owing to the diffraction persisting in the short-wavelength       
    limit in the forward direction.                                                            
       
●   Hence, the enclosed magnetic flux serves as a gate for                 
    the propagation of high-energy, almost classical, particles.            
               
●   A direct scattering experiment with the use of quasiclassical          
    (fast-moving) particles is quite feasible 



  

FINAL REMARKS

 
     The existence of the forward peak of the Fraunhofer
     diffraction in the hard-core scattering in the short-wavelength 
     limit was known theoretically long before the theoretical 
     discovery of the Aharonov-Bohm effect. Whereas the classical 
     reflection is surely observed, the forward peak of the
     Fraunhofer diffraction is elusive to experimental measurements: 
     as is noted in the monographs of P. M. Morse and H. Feshbach 
     [Methods of Theoretical Physics II (McGraw-Hill, New York, 1953) 
     Chapter 11, section 11.2.], it seems more likely that the 
     measurable quantity is the classical cross section, although 
     the details of this phenomenon depend on the method of measurement.
     
     However, almost six decades have passed from the time when this 
     assertion was made by Morse and Feshbach, and experimental 
     facilities have improved enormously since then. It is now the 
     challenge to experimentalists to reconsider the situation 
     with the Fraunhofer-diffraction peak in the hard-core scattering. 
     
     We would like to draw attention to this long-standing 
     experimental problem by pointing at the circumstances 
     when the detection of the forward diffraction peak will be 
     the detection of the Aharonov-Bohm effect persisting in 
     the quasiclassical limit.
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