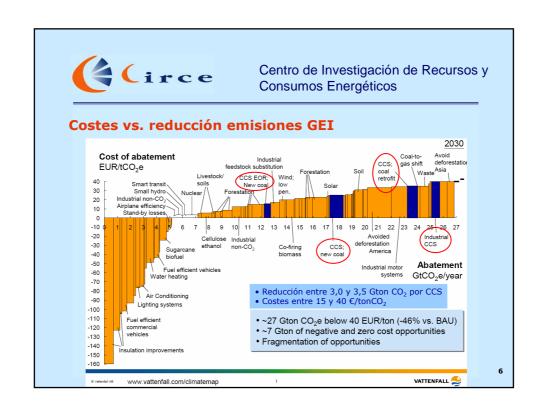
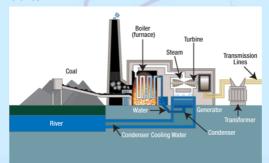


Sistemas de captura de CO₂ en centrales térmicas


Luis Miguel Romeo Fronteras de la Energía. Benasque 7 de Julio, 2009

Objetivos:

- Describir los sistemas de captura de CO₂ aplicable en centrales térmicas
 - Centrales térmicas
 - Captura de CO₂
- "Fronteras de la energía"
 - Búsqueda de los aspectos limitantes de cada tecnología
 - Oportunidades de investigación, desarrollo, ampliación del conocimiento, aportación a la sociedad


7

Centro de Investigación de Recursos y Consumos Energéticos

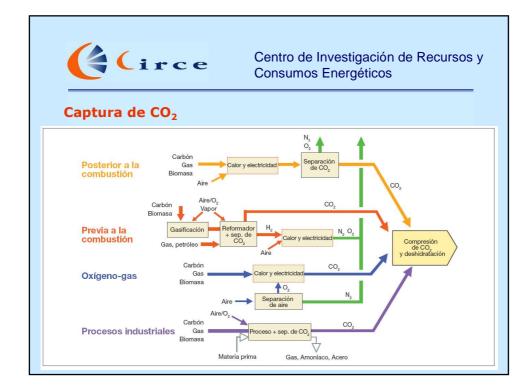
Centrales térmicas

- Sistema de transformación de energía química en energía eléctrica
 - Energía química= combustible (fósil)
 - Transformación= combustión y aprovechamiento energético
 - Caldera y ciclo de vapor
 - Emisiones

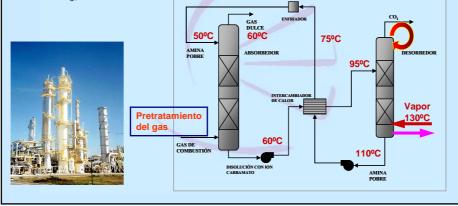
Centrales térmicas

Aspectos limitantes:

- Combustible (carbón, biomasa, coke, ...)
- Combustión (inquemados, emisiones, ...)
- Aprovechamiento energético
 - Primer y segundo principio de la Termodinámica
 - Rendimientos máximos: 44% carbón y 58% gas
- Materiales

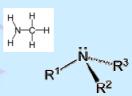


Otros aspectos a considerar:


- Concentración CO₂ en gases: 15%_w (carbón), 5%_w (gas)
- Emisiones CCTT carbón: 800-900 kg/MWh.
 - CT de 500 MWe y 8000 horas anuales: 3,2 3,6 MtCO₂/año (9000 t/día)

Captura de CO₂. Postcombustión. Absorción

- Opción idónea en postcombustión. Sistemas comerciales a menor escala
- Basada en solventes químicos (disolución acuosa alcalina, MEA, MDEA, NH₃)


11

Centro de Investigación de Recursos y Consumos Energéticos

Captura de CO₂. Postcombustión. Absorción

- Aspectos limitantes:
 - Pretratamiento de gases (temperatura, NOx, SOx, ...)
 - Desarrollo de absorbentes (básicamente SOx< 50 ppm)
 - Requerimientos energéticos de regeneración
 - Desarrollo de absorbentes (< 3.0 GJ/tCO₂) e integración térmica
 - Compromiso entre velocidad de reacción y energía regeneración
 - Desarrollo de absorbentes
 - Degradación oxidativa de la MEA
 - Desarrollo de absorbentes

Captura de CO₂. Oxicombustión

- Concepto existente para otras aplicaciones (aluminio, acero, vidrio,...)
- Combustión con mezcla de oxígeno puro y gas recirculado rico en CO₂
- Necesita una unidad de producción de oxígeno puro (separación de aire)
 - No tiene requerimientos energéticos para regenerar sorbentes

13

Centro de Investigación de Recursos y Consumos Energéticos

Captura de CO₂. Oxicombustión

- Aspectos limitantes:
 - Desconocimiento de la aplicación a centrales térmicas.
 - Repetición esquema combustión "tradicional". Demostración
 - Transferencia de calor (radiación principalmente)
 - Emisiones (NOx, SOx,)
 - Ensuciamiento y fusión de cenizas
 - Recirculación de gases y porcentaje de oxígeno
 - Eficiencia de la combustión
 - Fugas (no deseable aire en combustión)
 - Materiales, oxidacióni

Captura de CO₂. Oxicombustión

- Aspectos limitantes:
 - Producción de oxígeno
 - Demostración aumento de escala
 - Reducción coste de producción de oxígeno
 - Ciclos de turbina de gas
 - Nuevo desarrollo de equipos. Cambio de casi todas variables de diseño
 - Velocidad del sonido
 - Densidad del gas
 - Presión parcial de oxígeno
 - Materiales
 - Cambios aerodinámica
 - Calor específico
 - Refrigeración de alabes

15

Centro de Investigación de Recursos y Consumos Energéticos

Captura de CO₂. Precombustión.

- Generalmente una primera etapa que produce mezcla de H₂ y CO
 - Reformado de vapor: $C_xH_v + xH_2O <-> xCO + (x+y/2)H_2$ end
 - Oxidación parcial: $C_xH_v + x/2 O_2 <-> xCO + y/2 H_2$ exo
 - Reacción shift: $CO + H_2O <-> CO_2 + H_2$ exo
- Eliminación del CO₂ de la mezcla (15-60% y presión total 20-70 bar)

Captura de CO₂. Precombustión.

- Aspectos limitantes:
 - Reformado de vapor
 - Catalizadores para compuestos de azufre
 - Demostración Pressure swing adsorbers (PSA) a gran tamaño
 - Oxidación parcial
 - Similar oxicombustión por necesidad de oxígeno
 - Utilización de carbón(es)
 - Limpieza gas de síntesis. Compuestos de S, Cl, amoniaco.
 - Gasificador
 - Desarrollo de adsorbentes (similar absorbentes-postcombustión)
 - Regeneración y contaminación
 - Integración térmica y complejidad del proceso
 - Turbomáquinas para utilización de hidrógeno

17

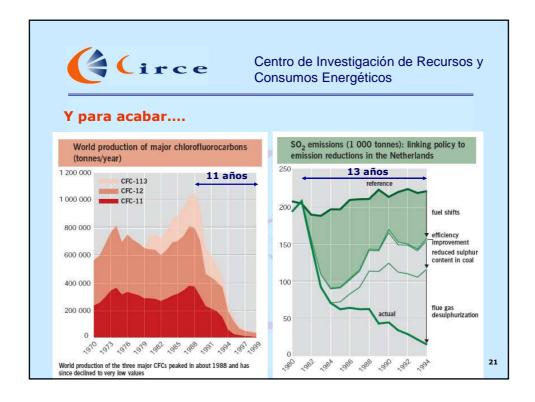
Centro de Investigación de Recursos y Consumos Energéticos

Captura de CO₂. Acondicionamiento y compresión

- Necesidad:
 - Reducir impurezas que afecten al transporte-almacenamiento (materiales y capacidad)
 - Compresión a fluido denso para economía transporte y almacenamiento
- Eliminación de agua básicamente y otros compuestos
- Compresión hasta 120 bar

Captura de CO₂. Acondicionamiento y compresión

- Aspectos limitantes:
 - Bajo nivel de control en el proceso de captura
 - Fugas, otras emisiones, pureza del oxígeno
 - Eliminación de vapor de agua en gases
 - Comienzo y ppm's
 - Requerimientos energéticos
 - o Integración térmica


19

Centro de Investigación de Recursos y Consumos Energéticos

Conclusiones

- Responsabilidad, oportunidad, liderazgo, futuro
- Fronteras de la captura de CO₂ en CCTT:
 - Postcombustión
 - Desarrollo de absorbentes
 - Oxicombustión
 - Repetir tecnología. Todos aspectos novedosos calderas, turbinas gas
 - Producción de oxígeno
 - Precombustión
 - Catalizadores, adsorbentes
 - Gasificadores y limpieza de gases
 - Turbomáquinas
 - Acondicionamiento y compresión
 - Vapor de agua, otros compuestos e integración térmica

